
Ａｐｐｅａｒｅｄ as “Schumpeterian Dynamics: A Disequilibrium Theory of Long-run Profits,”  
in Lionello Punzo ed. Cycles, Growth and Structural Change, (London: Routledge, 2001);  

pp.169-200. 

 

 

 

 

 

 

CF-30 

 

A DISEQUILIBRIUM THEORY OF LONG-RUN PROFITS: 

SCHUMPETERIAN DYNAMICS 

by 

Katsuhito Iwai*  

 December 1998 

 

<ABSTRACT> 
 
In the traditional economic theory, whether classical or neoclassical,  the 
long-run state is an equilibrium state where all  the profits in excess of 
normal rate are completely wiped out.  If there is a theory of long-run 
profits,  it  is a theory about the determination of the normal profit rate.  
This paper challenges this long-held tradition in economics.  It develops a 
simple evolutionary model of industry dynamics and demonstrates that 
what the economy approaches in the long-run is not a classical or 
neoclassical equilibrium of uniform technology but (at best) a statistical 
equilibrium of technological disequilibria which reproduces a dispersion 
of efficiencies in a statistically balanced form.  As Schumpeter once 
remarked, “surplus values may be impossible in perfect equilibrium, but 
can be ever present because that equilibrium is never allowed to establish 
itself.” The paper also shows that this evolutionary model can calibrate 
all  the macroscopic characteristics of neoclassical growth model without 
the neoclassical assumption of optimizing decision-makings. 
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A DISEQUILIBRIUM THEORY OF LONG-RUN PROFITS: 

SCHUMPETERIAN DYNAMICS 

 

1. Introduction. 

 The title of this paper may sound a contradiction in terms.  In the 

traditional economic theory, by which I include both classical and 

neoclassical economics, the long-run state of an economy is an equilibrium 

state and the long-run profits (if they ever exist) are equilibrium 

phenomena. Fig.1 illustrates this by drawing two supply curves that can be 

found in any textbook of economics. In the upper panel is an upward-sloping 

supply curve which aggregates diverse cost conditions of the existing firms 

in an industry. Its intersection with a downward-sloping demand curve 

determines an equilibrium price, which in turn determines the amount of 

profits (represented by the shaded triangle) accruing to the industry as a 

whole.  As long as the supply curve is upward-sloping, an industry is able to 

generate positive profits.  

<Insert Fig.1 around here.> 

 In traditional theory, however, this is merely a description of the ‘short-

run’ state of an industry.  Whenever there are positive profits, existing firms 

are encouraged to expand their productive capacities and potential firms are 

induced to enter the industry, both making the supply curve flatter and 

flatter.  This process will continue until the industry supply curve becomes 

totally horizontal, thereby wiping out any opportunity for positive profits.  

The lower panel of Fig.1 describes this ‘long-run’ state of the industry.  

This implies that if there are any profits in the long-run, it must be the 

‘normal’ profits which have already been incorporated into cost 

calculations.  In fact, it is how to explain the fundamental determinants of 

these normal profits which divides the traditional economic theory into 

classical and neoclassical approaches.  Classical economics (as well as 

Marxian economics) has highlighted an inverse relationship between the 

normal profit rate and the real wage rate, and reduced the problem of 

determining the former to that of determining the latter and ultimately to 

that of distributional conflicts between classes.  Neoclassical economics has 

identified the normal profit rate with the interest rate plus a risk premium 

and reduced the problem of its determination to that of characterizing 
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equilibrium conditions for intertemporal resource allocation under 

uncertainty.  But no matter how opposed their views might appear over the 

ultimate determinants of normal profits, they share the same ‘equilibrium’ 

perspective on long-run profits -- any profits in excess of the normal rate are 

‘disequilibrium’ phenomena which are bound to disappear in the long-run. 

 It is Joseph Schumpeter who gave us a powerful alternative to this deep-

rooted ‘equilibrium’ tradition in the theory of long-run profits.  According 

to Schumpeter, it is through an “innovation” or “doing things differently” 

that positive profits emerge in the capitalist economy.  “The introduction of 

new commodities..., the technological change in the production of 

commodities already in use, the opening-up of new markets or of new 

sources of supply, Taylorization of work, improved handling of material, the 

setting-up of new business organizations”1 etc. allow the innovators to 

charge prices much higher than costs of production.  Profits are thus the 

premium put upon innovation.  Of course, the innovator’s cost advantage 

does not last long.  Once an innovation is successfully introduced into the 

economy, “it becomes much easier for other people to do the same thing.”2  A 

subsequent wave of imitations soon renders the original innovation obsolete 

and gradually wears out the innovator’s profit rate.  In the long-run, there 

is therefore an inevitable tendency towards classical or neoclassical 

equilibrium which does not allow any positive profits in excess of the normal 

rate.  And yet Schumpeter argued that positive profits will never disappear 

from the economy because capitalism is “not only never but never can be 

stationary.”  It is an “evolutionary process” that “incessantly 

revolutionalizes the economic structure from within, incessantly destroying 

an old one, incessantly creating a new one.”3  Indeed, it is to destroy the 

tendency towards classical or neoclassical equilibrium and to create a new 

industrial disequilibrium that is the function the capitalist economy has 

assigned to those who carry out innovations.  “Surplus values [i.e., profits in 

excess of normal rate] may be impossible in perfect equilibrium, but can be 

ever present because that equilibrium is never allowed to establish itself.  

                              
1 Schumpeter [1939], p.84. 
2 Schumpeter [1939], p.100. 
3 Schumpeter [1950], p. 83. 
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They may always tend to vanish and yet be always there because they are 

incessantly recreated.”4

 It is the first objective of this paper to formalize this grand vision of 

Joseph Schumpeter from the perspective of evolutionary economics.5  It 

makes use of a simple evolutionary model of Iwai [1984a, b] to demonstrate 

the Schumpeterian thesis that profits in excess of normal rate will never 

disappear from the economy no matter how long it is run.  Indeed, it will be 

shown that what the economy will approach over a long passage of time is 

not a classical or neoclassical equilibrium of uniform technology but (at 

best) a statistical equilibrium of technological disequilibria which 

reproduces a relative dispersion of efficiencies among firms in a statistically 

balanced form.  Although positive profits are impossible in perfect 

equilibrium, they can be ever present because that equilibrium is never 

allowed to establish itself. 

 This paper is organized as follows.  After having set up the static 

structure of an industry in section 2, the following three sections will 

develop an evolutionary model of industrial dynamics and examine how the 

firms’ capacity growth, technological imitations and technological 

innovations respectively move the industry’s state of technology over time.  

It will be argued that while both the differential growth rates among 

different efficiency firms and the diffusion of better technologies through 

imitations push the state of technology towards uniformity, the punctuated 

appearance of technological innovations disrupts this equilibriating 

tendency.  Section 6 will then turn to the long-run description of the 

industry’s state of technology.  It will indeed be shown that over a long 

passage of time these conflicting microscopic forces will balance each other 

in a statistical sense and give rise to a long-run distribution of relative 

efficiencies across firms.  This long-run distribution will in turn allow us to 

deduce an upward-sloping long-run supply curve in section 7.  The industry 

is thus capable of generating positive profits even in the long-run!  Hence, 

the title of this paper –– ‘a disequilibrium theory of long-run profits’.   

                              
4 Schumpeter [1950], p. 28. 
5 See, for instance, Nelson and Winter [1982], Dossi, Freeman, Nelson, Silverberg and 
Soete [1988],  Metcalfe and Saviotti [1991], and Anderson [1994] for the comprehensive 
expositions of the “evolutionary perspective” in economics.   
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Section 8 will then examine the factors determining the long-run profit rate 

of the industry. 

The present paper will adopt the ‘satisficing’ principle for the description 

of firms’ behaviors – firms do not optimize a well-defined objective function 

but simply follow organizational routines in deciding their growth, imitation 

and innovation policies.6  Indeed, the purpose of the penultimate section 9 is 

to show that our evolutionary model is able to “calibrate” all the 

macroscopic characteristics of neoclassical growth model without having 

recourse to the neoclassical assumption of fully optimizing economic agents.  

If we look only at the aggregative performance of our evolutionary economy, 

it is as if aggregate labor and aggregate capital together produce aggregate 

output in accordance with a well-defined aggregate production function with 

Harrod-neutral technological progress.  Yet, this macroscopic picture is a 

mere statistical illusion.  If we zoomed into the microscopic level of the 

economy, what we would find is the complex and dynamic interactions 

among many a firm’s capital growth, technological imitations and 

technological innovations.  It is simply impossible to group these 

microscopic forces into a movement along an aggregate production function 

and a shift of that function itself.  The neoclassical growth accounting may 

have no empirical content at all. 

Section 10 concludes the paper. 

 

2. Construction of the industry supply curve. 

The starting point of our evolutionary model is an observation that 

knowledge is not a public good freely available among firms and that 

technologies with a wide range of efficiency coexist even in the same 

industry.  And one of the end points of our evolutionary model is to 

demonstrate that technologies with a wide range of efficiency will indeed 

coexist even in the long-run. 

                              
6 The term “satisficing” was first coined by Simon [1957] to designate the behavior of a 
decision maker who does not care to optimize but simply wants to obtain a satisfactory 
utility or return.  The notion of “organizational routines” owes to Nelson and Winter 
[1982].   Organizations “know” how to do things.  In Iwai [1999] I have provided a legal-
economic-sociological framework for understanding the nature and sources of such 
organizational capabilities. 
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 Consider an industry which consists of many firms producing the same 

product.7   Let us denote by n the total number of technologies coexisting in 

the industry and assume that each of these technologies is of Leontief-type 

fixed-proportion technology with labor service as the sole variable input and 

capital stock as the sole fixed input.  If we further assume that only labor 

productivity varies across technologies, we can express the ith technology as: 

(1)  q = Min l
c

k
bi

[ , ] , 

where q, l and k represent final output, labor input and capital stock, and ci 

and b are labor and capital coefficients.   Let us choose money wage as the 

numeraire.  Then, the labor coefficient ci determines the unit cost of each 

technology up to a productive capacity k/b.   I will slightly abuse the term 

and call ci the ‘unit cost’ of technology i.   It is then possible to rearrange 

the indices of technology and let cn stand for the lowest and c1 the highest 

unit cost of the industry without an loss of generality, or: 

(2)   cn < cn-1 < ... < ci < ... < c1 . 

 I now have to introduce several notations in order to construct the supply 

curve of the industry in question.  Let kt(ci) represent the sum of the capital 

stocks of all the firms whose unit cost is ci at time t, and let Kt(ci) ≡ 

kt(cn)+…+kt(ci) represent the cumulative sum of all the capital stocks of the 

firms whose unit costs are ci or lower at time t.  The industry’s total capital 

stock at time t can then be represented by Kt(c1), but will be denoted simply 

as Kt in the following discussion.  Next, let st(ci) and St(ci) represent the 

‘capital share’ and the ‘cumulative capital share’ of a unit cost ci at time t.  

Of course, we have st(ci) ≡ kt(ci)/Kt and St(ci) ≡ Kt(ci)/Kt.  As a convention, we 

set St(c) = St(ci) for ci ≤ c < ci-1.  Fig.2 exhibits a typical distribution of 

cumulative capital shares in the industry.  It illustrates the ‘state of 

technology’ at a point in time by showing us how technologies with diverse 

unit costs are distributed among capital stocks of an the industry. 

<Insert Fig.2 around here.> 

The state of technology thus introduced, however, represents merely the 

production ‘possibility’ of an industry.  How this possibility is actualized 

depends upon the price each firm is able to obtain in exchange for its 

product.  Let us assume that the industry in question is a competitive 

                              
7 Or we can think of this as a one-commodity economy with many competing firms. 
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industry in which a large number of firms are producing the same 

homogeneous product and charge the same price for it.8  Let us denote by Pt 

the product price (measured in terms of money wage) at time t.  Then, under 

the assumptions of homogeneous product and fixed proportion technology, 

firms with unit costs strictly smaller than Pt decide to produce up to their 

productive capacity k/b, and firms whose unit costs are strictly higher than 

Pt decide to quit all production.  Firms with the unit cost equal to Pt are 

indifferent to their production level, as long as it does not exceed their 

productive capacity.  (We ignore here the cost of shutting-down of a factory 

as well as the cost of setting-up of a new production line.)  

It follows that when ci-1 > Pt > ci the total supply of the industry product 

becomes equal to Kt(ci)/b and that when Pt = ci it takes any value from 

Kt(ci+1)/b to Kt(ci)/b.  Hence, if we denote by Yt(P) the industry’s ‘short-run 

supply curve’ (or short-run supply correspondence, to be precise ) at time t, 

it can be written as 

(3)  Yt(P) = Kt(ci)/b                                      if ci < P < ci-1

                   ε [Kt(ci+1)/b, Kt(ci)/b]                     if P = ci . 

Dividing this by the total productive capacity Kt/b, we can also express it as: 

(4)  yt(P) ≡  Yt(P)b/Kt  = St(ci)                       if ci < P < ci-1

                                        ε [St(ci+1), St(ci)]        if P = ci . 

(4) is nothing but the ‘relative’ form of industry supply curve at time t, 

which has neutralized the scale effect of changes in the total capital stock of 

the industry.  Since the forces governing the motion of St(c) are in general of 

different nature from those governing the motion of Kt, I will be concerned 

mostly with this relative form of industry supply curve in what follows.9

<Insert Fig.3 around here.> 
                              
8 Our evolutionary model can also accommodate a wide variety of industry structures.   
See Appendix A of Iwai [1984b] for the way to deal with the case of monopolistically 
competitive industry.  
9 It is easy to show from (8) below that: &K /Kt t  = , so that 
the growth rate of the industry’s total capital stock is linearly dependent on the 
proportional gap between the price-wage ratio P

γ γ(log (log ) ( ))P c s ct i t ii− ∑ − 0

t and the industry-wide average unit 
cost.  If &K /Kt t is pre-determined (probably by the growth rate of the demand for this 
industry’s products), this equation can be used to determine Pt.  If, on the other hand, Pt 
is pre-determined (probably by the labor market conditions in the economy as a whole), 
this equation can be used to determine &K /Kt t .  In either case, the forces governing the 
motion of Kt are in general of the different nature from those governing the evolution of  
{St(c)}. 
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 Fig.3 depicts the relative form of industry supply curve, yt(P) ≡ Yt(P)b/Kt, 

in a Marshallian diagram with prices and costs (both in terms of money 

wage) measured along vertical axis and quantities per unit of total 

productive capacity measured along horizontal axis.  Indeed, it merely turns 

Fig.2 around 45 degree line.  It is an upward-sloping curve as long as 

different unit costs coexist within the same industry. 

 

3. Darwinian dynamics of the state of technology. 

 Any freshman knows that the industry supply curve is a horizontal sum of 

all the individual supply curves existing in the industry.  But the problem we 

now have to tackle with is to ascertain how the dynamic competition among 

firms will mold the evolutionary pattern of the supply curve and govern the 

fate of the industry.  This is not the problem for freshman.  Since there is a 

one-to-one correspondence between the relative form of industry supply 

curve and the cumulative distribution of capital shares, the analysis of the 

dynamic evolution of the former can be reduced to that of the latter.  

 Now, the state of technology in our Schumpeterian industry is moved by 

complex interactions among the dynamic forces working at the microscopic 

level of individual firms -- successes and failures of technological 

innovations and imitations and the resulting differential growth rates among 

competing firms.  Let us examine the effect of differential growth rates first.  

 “Without development there is no profit, without profit no development,” 

so said our Schumpeter.10  The following hypothesis relates the growth rate 

of capital stock to the rate of profit:  

Hypothesis (CG): The capital growth rate of a firm with unit cost ci is 

linearly increasing in its current rate of profit rt(ci), or it is equal to:  

(5) γrt(ci)-γ0 ; 

where γ > 0 and γ0 > 0 are given constants.� 

This hypothesis needs little explanation.  It merely says that a higher profit 

rate on the existing capital stocks stimulates capital accumulation, either by 

influencing the expected profitability of new investment projects or by 

directly providing an internal fund for the projects.  The parameter γ (or, 

more precisely, γ/b) represents the sensitivity of the firm’s growth rate to 

the current profit rate, and the parameter γ0 represents the rate of capital 

                              
10 Schumpeter [1961], p. 154.  
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depreciation of the break-even firm.  As I have already indicated in section 

1, the present paper follows the strict evolutionary perspective in supposing 

that firms do not optimize but only ‘satisfice’ in the sense that they simply 

follow organizational routines in deciding their growth, imitation and 

innovation policies.  Indeed, one of the purposes of this paper is to see how 

far we can go in our description of the economy’s dynamic performance 

without relying on the assumptions of individual optimality.  I will therefore 

assume that the values of γ  and γ0 are both exogenously given.11

 We have already assumed that every firm in the industry produces the 

same homogeneous product and faces the same price Pt.  If we further 

assume that the price of capital equipment is proportional to Pt, we can 

calculate the profit rate r(ci)≡ (Ptyt-cilt)/Ptkt as b(Pt-ci)/Pt, which we will 

approximate as b(logPt-logci) for analytical convenience.  Then, by simply 

differentiating the cumulative capacity share St(ci) with respect to time, 

Hypothesis (CG) allows us to deduce the following set of differential 

equations for the dynamics of cumulative capital shares12: 
(6)  = γδ& ( )S ct i t(ci)St(ci)(1-St(ci))               (i = n, n-1, …, 1). 

In the above equations, δ t(ci) represents the difference between the 

logarithmic average of a set of unit costs higher than ci and the logarithmic 

average of a set of unit costs not higher than ci, or:                    

(7)  δ t(ci) ≡ (log ) ( )
( )

(log ) ( )
( )

c s c
S c

c s c
S c

j t j

t i

j t j

t ij

i

j i

n

11

1

-
-

-

= =
∑ ∑ > 0.                 

Its value in general depends on t and the whole distribution of ci.  I will, 

however, proceed the following analysis as if it were an exogenously given 

constant δ, uniform both across technologies and over time.  This will 

                              

j

11 It is, however, not so difficult to deduce an investment function of this form by 
explicitly setting up an intertemporal optimization problem with adjustment costs, as in 
Uzawa [1969].    
12 The actual derivation is as follows.  ≡  & ( )S ct i & ( )s ct jj i

n
=∑

=   ( & ( ) ( ) ) ( )k c /k c K /K s ct j t j t t t jj i
n -=∑

=    by (5) (( (log log ) ) ( ( log log ) ) ( )) ( )γ γ γ γp c p c s c s ct j t h t h th
n

j i
n - - 0 01- - -== ∑∑

= γ ( (log ) ( ) log ) ( )c s c c s ch t h j t jh
n

j i
n

== ∑∑ 1 -  

=   γ ( (log ) ( ) ( ) (log ) ( ) ( ) log ( ))c s c S c c s c S c c s ch t h t i h t h t i j t jh
i

h i
n

j i
n

= = =∑ + ∑ ∑1
1- -

= γδt(ci)St(ci)(1-St(ci)) . 
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simplify the exposition of our evolutionary model immensely without losing 

any of its qualitative nature.13  Then, we can rewrite (6) as: 
(8)  ≡ γδS& ( )S ct i t(ci)(1-St(ci))              (i = n, n-1, …, 1). 

Each of the above equations is a well-known ‘logistic differential equation’ 

with a logistic parameter µ, and can be solved explicitly to yield: 

(9) St(ci) =  1
1 1 1+ ( ( ) ) ( )/S c - eT i

- t-Tγδ       (i = n, n-1, …, 1),  

where e stands for the exponential and Τ ( ≤ t) a given initial time.14

<Insert Fig.4 around here.> 

Differential growth rates among firms with different cost conditions never 

leave the industry’s state of technology static.  As the firms with relative 

cost advantage grow faster than the firms with relative cost disadvantage, 

the distribution of capital shares gradually shifts in favor of the lower unit 

costs, thereby reducing the average unit cost of the industry as a whole.  

This process then eliminates the relative cost advantage of the existing 

technologies one by one until the capital share of the least unit cost 

completely overwhelm those of the higher ones.  Only the fittest will survive 

in the long-run through their higher growth rates, and this of course is an 

economic analogue of ‘Darwinian’ natural selection mechanism. The set of 

logistic equations (9) describes this ‘economic selection’ mechanism in the 

simplest possible mathematical form, and its evolutionary dynamics is 

illustrated by Fig. 4.  In particular, the equation for i = n shows that the 

cumulative capital share of the lowest unit cost St(cn) moves along an S-

shaped growth path.  It grows almost exponentially when it occupies a 

negligible portion of the industry, gradually loses its growth momentum as 

its expansion narrows its own relative cost advantage, but never stops 

growing until it swallows the whole industry.  

 
                              
13  This is the simplification I also adopted in Iwai [1984b].   However, in a recent article 
Franke [1998] indicated that the value of δt(c) may actually vary considerably as the 
parameter values of γ, ν and λ as well as the value of c vary.   A caution is thus needed to 
use this approximation for purposes other than heuristic device. 
14 A logistic differential equation: x′= ax(1-x) can be solved as follows.  Rewrite it as: 
x′/x-(1-x)′/(1-x) and integrate it with respect to t, we obtain: log(x)-log(1-x) = log(x0)-
log(1-x0)+at, or x/(1-x) = eatx0/(1-x0).  This can be rewritten as: x = 1/(1+(1/x0-1)e-at), 
which is nothing but a logistic equation given by (9).  
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4. Lamarkian dynamics of the state of technology 

 Next, let us introduce the process of technological imitation and see how it 

molds the dynamics of the state of technology.  In this paper I will suppose 

that technology is not embodied in capital stocks and hypothesize the process 

of imitations as follows15: 

Hypothesis (IM’): The probability that a firm with unit cost ci succeeds in 

imitating a technology with unit cost cj is equal to: 

(10)   µst(cj)dt  if cj < ci  and  0  if cj ≥ ci ,  

for a small time interval dt; where µ (> 0) is assumed to be a constant 

uniform across firms.  ◊ 

 One of the characteristic features of technology is its non-excludability.  

It may be legally possible to assign property rights to the owners of 

technology.  But, as Arrow has remarked in his classic paper [1962], “no 

amount of legal protection can make a thoroughly appropriable commodity 

of something so intangible as information,” because “the very use of the 

information in any productive way is bound to reveal it, at least in part.”16  

The above hypothesis mathematically captures such spill-over effects of 

technology in the simplest possible manner.  It says that it is much easier for 

a firm to imitate a technology with high visibility (i. e., a large capital 

share), than to imitate a technology with low visibility (i.e., a small capital 

share).  Needless to say, the firm never imitates the technology whose unit 

cost is not smaller than its current one.  The imitation coefficient µ in the 

above hypothesis represents the effectiveness of each firm’s imitative 

activity.  There is a huge body of literature, both theoretical and empirical, 

which identifies factors which influence the effectiveness of firms’ imitation 

activities.17  The main concern of the present paper is, however, to work out 

                              
15 The reason I have designated this Hypothesis by (IM’) is to differentiate it from a 
slightly different hypothesis adopted in Iwai [1984a].  Its Hypothesis (IM) assumes that 
the probability of imitating a better technology is proportional to the frequency (rather 
than their capital share) of the firms using it.   On the other hand, Iwai [1998] has 
adopted yet another hypothesis which assumes that firms imitate only the best practice 
technology and the probability of its success is proportional to the frequency of the firms 
using it.  
16 p. 615. 
17 See, for instance, Mansfield, Schwartz and Wagner [1981], Gorts and Klepper [1982] 
and Metcalfe [1988]. 
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the dynamic mechanism through which a given imitation policy of firms 

structures the evolutionary pattern of the industry’s state of technology.   In 

what follows I will simply assume that µ is an exogenously given parameter, 

uniform across firms and constant over time.18

 In order to place the effect of technological diffusion in full relief, let us 

ignore the effect of economic selection for the time being.  Then, the 

hypothesis (IM’) allows us to deduce the following set of logistic differential 

equations as a description of the evolution of the state of technology under 

the sole pressure of technological imitations19:  
(11) =µS& ( )S ct i t(ci)(1-St(ci))                              (i = n, n-1, …, 1) . 

We have again encountered logistic differential equations, which can then be 

solved to yield the second set of logistic equations in this paper! 

(12)  St(ci) =  1
1 1 1+ ( ( ) ) ( )/S c - eT i

- t-Tµ                   (i = n, n-1, …, 1), 

where Τ ( ≤ t) a given initial time. 

 Since the second set of logistic equations (12) is mathematically equivalent 

to the first set of logistic equations (9), Fig. 4 in the preceding section can 

again serve to illustrate the dynamic evolution of the cumulative capacity 

shares under the sole pressure of technological diffusion.  And yet, the logic 

behind these second logistic equations is entirely different from that of the 

first.  “If one or a few have advanced with success many of the difficulties 

                              
18 It is, however, possible to incorporate a trade-off between the resources devoted to 
capital growth and the resources devoted to imitative activities into our model.   For 
instance, the growth parameters γ and/or -γ0 in (5) can be made a decreasing 
function of the imitation coefficient µ.  
19 The actual derivation is as follows.  The value of St(ci) increases whenever one of the 
firms with unit costs higher than ci succeeds in imitating one of the technologies with 
unit costs ci or lower.  Indeed, because of the assumption of the disembodied nature of 
technology, it increases by the magnitude equal to the imitator’s capacity share.  Note 
that St(ci) is not affected by the imitation of any of the firms with unit costs ci or less, for 
it only effects an infra-marginal transfer of capacity share.  Let Mt(ci) denote the 
number of firms with unit costs ci or lower.  Since the average capacity share of the 
firms with unit costs higher than ci is (1-St(ci))/(M-Mt(ci)) and the probability of a 
successful imitation for each of those M-Mt(ci) firms is µSt(ci)dt during a small time 
interval dt, we can calculate the expected increase in St(ci) during dt as ((1-St(ci))/(M-
M(ci))(µSt(ci)dt)(M-Mt(ci)) = (µSt(ci)dt)(1-St(ci)).  If the number of firms is sufficiently 
large, the law of large numbers allows us to use this expression as a good approximation 
of the actual rate of change in St(ci).  Dividing this by dt and letting dt → 0, we obtain 
(11). 
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disappear,” so wrote Schumpeter, “others can then follow these pioneers, as 

they will clearly do under the stimulus of the success now attainable.  Their 

success again makes it easier, through the increasingly complete removal of 

the obstacles..., for more people follow suit, until finally the innovation 

becomes familiar and the acceptance of it a matter of free choice.”20  The 

logistic equations (12) describe this swarm-like appearance of technological 

imitations in the simplest possible form.  In particular, the equation for i = n 

shows that the cumulative capital share of the lowest unit cost moves along a 

S-shaped growth path, initially growing at an exponential rate but gradually 

decelerating its growth rate to approach unity asymptotically.  In the long-

run, therefore, the lowest cost technology will dominate the whole industry, 

simply because it will eventually be diffused to all the firms in it.  This 

technological diffusion process is nothing but an economic analogue of the 

‘Lamarkian’ model of biological evolution – the achievement of one 

individual are passed directly to the other individuals. 

 Let us then bring back the Darwinian process of economic selection into 

our industry and add (6) to (11).  The result is the third set of logistic 

differential equations in the present paper: 
(13)  = (γδ+µ)S& ( )S ct i t(ci)(1-St(ci))                     (i = n, n-1, …, 1), 

which can again be solved explicitly as: 

(14)  St(ci) =  1
1 1 1+ +( ( ) ) ( )(/S c - eT i

- t-γδ µ )T

                             

           (i = n, n-1, …, 1),  

for t≥ T.  (We refrain from drawing a diagram for the third set of logistic 

equations (14) which is qualitatively the same as Fig. 4.)                                 

 We have thus shown how the mechanism of economic selection and the 

process of technological diffusion jointly contribute to the logistic growth 

process of cumulative capital shares -- the former by amassing the 

industry’s capacities in the hands of the lowest cost firms and the latter by 

diffusing the advantage of the lowest cost technology among imitating firms.  

While the former is Darwinian, the latter is Lamarkian.  But, no matter how 

opposed the underlying logic might be, their effects upon the industry’s state 

of technology are the same --- the lowest cost technology will eventually 

dominate the whole capital stocks of the industry. 

 
 

20 Schumpeter [1961], p. 228. 
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5. Punctuated dynamics of the state of technology. 

 Does this mean that the industry’s long-run state is no more than the 

paradigm of classical and neoclassical economics in which every market 

participant is supposed to have a complete access to the most efficient 

technology of the economy? 

 The answer is, however, “No”.  And the key to this negative answer lies, of 

course, in the phenomenon of innovation -- the carrying out of what 

Schumpeter called a “new combination.”  Indeed, the functional role of 

innovative firms is precisely to destroy this tendency towards static 

equilibrium and to create a new industrial disequilibrium. 

 Suppose that at some point in time one of the firms succeeds in 

introducing a new technology with unit cost cn+1 smaller than cn.  Let us 

denote this time by T(cn+1) and call it the ‘innovation time’ for cn+1.  Then, a 

new cumulative capital share St(cn+1) emerges out of nothing at T(cn+1).  

Because of the disembodied nature of technology, ST(cn+1)(cn+1) is identical 

with the capital share of the innovator of cn+1.  Moreover, if the innovator’s 

unit cost was, say, ci before innovation, all the cumulative capital shares 

from St(ci+1) to St(cn) also experience a jump of the same magnitude at time 

T(cn+1).  In no time the innovator starts to expand its capital stocks rapidly, 

which then induces all the other firms to seek opportunities to imitate its 

technology.  Through such selection mechanism and diffusion process, the 

newly created cumulative capital share begins to follow a S-shaped growth 

curve described by (14).   

<Insert Fig. 5 around here.> 

 Innovation is not a single-shot phenomenon, however.  No sooner than an 

innovation occurs, a new round of competition for a better technology 

begins.  And no sooner than a new winner of this game is named, another 

round of technological competition is set out.  The process repeats itself 

forever, and technologies with ever lower unit costs, cn+2 > cn+3 > …> cN > … 

will be introduced into an industry one by one at their respective innovation 

times T(cn+2), T(cn+3),…, T(cN), …. 

Fig.5 shows how the industry’s state of technology evolves over time, now 

as an outcome of the interplay among three dynamical forces working in the 

industry -- economic selection mechanism, technological diffusion through 

imitations and creative destruction of innovations.  In fact, while the former 
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two work as equilibriating forces which tend the state of technology towards 

uniformity, the third works as a disequilibriating force which destroys this 

leveling tendency.  A new question then arises: is it possible to derive any 

law-like properties out of this seemingly erratic movement of the industry 

state of technology? 

 In order to give an answer to this question, it is necessary to introduce 

two more hypotheses -- one pertaining to invention and the other to 

innovation.  The conceptual distinction between invention and innovation 

was very much emphasized by Schumpeter.  Invention is a discovery of new 

technological possibility which is potentially applicable to the production 

processes of the economy.  But, “as long as they are not carried into 

practice,” so says Schumpeter, “inventions are economically irrelevant,” and 

“to carry any improvement into effect is a task entirely different from the 

inventing of it.”21

 Denote then by C(t) the unit cost of potentially the best possible 

technology at time t and call it ‘the potential unit cost’.  The following is our 

hypothesis about the process of inventions22: 

Hypothesis (PC): The potential unit cost is declining at a positive constant 

rate λ over time. 

(15)   C(t) = e , - tλ

where the scale of C(0) is chosen to be unity.� 

The declining rate of potential unit cost λ reflects the speed at which the 

stock of technological knowledge is being accumulated by academic 

institutions, private firms, government agencies and amateur inventors 

throughout the entire economy.  In the present paper which follows an 

evolutionary perspective, however, it is assumed to be given exogenously to 

the industry. 

 We are then able to characterize the notion of ‘innovation’ formally as an 

event in which the potential unit cost is put into actual use by one of the 

firms in the industry.  This is tantamount to saying that when an innovation 

takes place at time t, it brings in a technology of unit cost C(t) for the first 

time into an industry.  This also implies that if a technology with unit cost c 
                              
21 Schumpeter [1961], p. 88. 
22 Iwai [2000], however, presents an evolutionary model which does not separate 
innovators from inventors and assume that each innovation raises the productivity of 
the industry’s best technology by a fixed proportion.   
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is presently in use, it must have been introduced at time t = T(c) where T(c) 

is the inverse function of C(t) defined by: 

(16)  T(C(t)) ≡  t  or C(T(c)) ≡ c . 

The function T(c) thus defined is nothing but the ‘innovation time’ for unit 

cost c we have already defined at the beginning of this section.  Under the 

specification of the dynamics of potential unit cost in (15), we have T(c) = -

(logc)/λ. 

 Next, let us introduce the hypothesis about the process of innovations: 

Hypothesis (IN-a): The probability that a firm succeeds in an innovation is 

equal to:  

(17)  νdt ,  

during any small time interval dt, where ν is a small positive constant.� 

The parameter ν represents the effectiveness of each firm’s innovative 

activity in the industry.  Its value should in general reflect a particular 

innovation policy the firm has come to adopt in its long-run pursuit for 

technological superiority, and there is a huge body of literature identifying 

the factors which influence the firm’s innovation policy.23   Our main 

concern in the present article, however, is rather to examine how a given 

innovation policy will mold the evolutionary pattern of the industry’s state 

of technology in the long-run.   In what follows I will simply assume that ν is 

an exogenously given parameter, uniform across firms and constant over 

time.24  

 Implicit in the above hypothesis is the supposition that an innovation can 

be introduced at any time and by any firm, irrespective of at what time and 

by which firm the last innovation was introduced.25  Indeed, if we let M 

denote the total number of firms in the industry, the probability that there is 

an innovation during a small time interval dt is equal to (νdt)M = vMdt.  
                              
23 See, for instance, Kamien and Schwarts [1982], Grilliches [1984] and Scherer and 
Ross [1990]. 
24 It is, however, possible to incorporate a trade-off between the resources devoted to 
capital growth and the resources devoted to innovative activities into our model.   For 
instance, the growth parameters γ and/or -γ0 in (5) can be made a decreasing 
function of the innovation coefficient ν.  
25 Iwai [1984a, 2000] also develops versions of evolutionary models which assume only 
the firms currently using the best technology can strike the next innovation.  In this 
case, the process of technological innovations is no longer a Poisson process, so that it is 
necessary to invoke the so-called “renewal theory” in mathematical probability to 
analyze the long-run performance of the state of technology. 
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Hence, the process of technological innovations in the industry as a whole 

constitute a Poisson process, which is sometimes called the law of rare 

events.  As time goes by, however, innovations take place over and over 

again, and out of such repetitive occurrence of rare events a certain 

statistical regularity is expected to emerge.   

 

6. The state of technology in the long-run. 

Indeed, not only the process of innovations but also the entire 

evolutionary process of the state of technology is expected to exhibit a 
statistical regularity over a long passage of time.  To see this, let  

denote the expected value of the cumulative capital share of c at time t.  For 

the purpose of describing the long-run pattern of the industry’s state of 

technology, all we need to do is to follow the path of 

$ ( )S ct

$St (c).  Indeed, it is not 

hard to deduce from Hypothesis (IN-a) the following set of differential 
equations for 26$ ( )S ct : 

(18)  = (γδ+µ) (1- )+ν(1- ), $& ( )S ct $ ( )S ct $ ( )S ct $ ( )S ct

for t ≥ T(c).  It turns out that this is the fourth set of logistic differential 

equations of this paper, for each of which can be rewritten as  = 
(γδ+µ+ν)x(1-x) with x ≡ ( +ν/(γδ+µ))/(1+ν/(γδ+µ)).  It can thus be solved 

to yield: 

&x
$ ( )S ct

(19)  =  $ ( )S ct
µγδ

ν

ν
µγδ νµγδ

µγδ
ν

++
+

+

++

+ -
e)(1

1

))c(t-T)((-
 , 

for t ≥ T(c).27  . 

                              
26 The derivation is as follows.  Whenever one of the firms with unit costs higher than c 
succeeds in innovation, the value of St(c) increases by the magnitude equal to the 
innovator’s capacity share.  (St(c) is, however, not affected by the innovation of any of 
the firms with unit costs c or less, because it only effects an infra-marginal transfer of 
the capacity share.)  As in note 11, let M-Mt(ci) denote the total number of firms with 
unit costs higher than ci.  The average capacity share of the firms with unit costs higher 
than ci is (1-St(ci))/(M-Mt(ci)) and the probability of a successful innovation for each of 
those M-Mt(ci) firms is νdt during a small time interval dt.  We can then calculate the 
expected increase in St(ci) due to an innovation as ((1-St(ci))/(M-M(ci)))(νdt)(M-Mt(ci)) = 
(νdt)(1-St(ci)).  If we divide this by dt and add to it the effects of economic selection and 
technological imitations given by (13), we obtain (18).   
27 In deducing (19), we have employed a boundary condition: = ν or  = 
0. 

$& ( )( )S cT c $ ( )( )S cT c
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  Of course, we cannot hope to detect any regularity just by looking at the 
motion of expected cumulative shares  given above, for they are 

constantly pushed to the lower cost direction by recurrent innovations.  If, 

however, we neutralize such declining tendency by measuring all unit costs c 

relative to the potential unit cost C(t) and observe the relative pattern of the 

cumulative capital shares, a certain regularity is going to emerge out of 

seemingly unpredictable vicissitude of the industry’s state of technology.  

Let us thus denote by z the proportional gap between a given unit cost c and 

the current potential unit cost C(t), or 

$ ( )S ct

(20)  z ≡ logc - logC(t). 

We call this variable the ‘cost gap’ of a given technology at time t.  Since the 

inverse relationship between innovation time T(c)= -(logc)/λ and the 
potential unit cost C(t) =  implies z = λ(t-T(c)), it is possible to rewrite 

(19) in terms of z as follows: 

te λ-

(21)  = ≡ $ ( )S ct
~( )S z

µγδ
ν

ν
µγδ λνµγδ

µγδ
ν

++
+

+

++

+ -
e)(1

1

/z)(-
. 

 This is the fifth time we have encountered a logistic curve.  This time, it 

represents the ‘long-run cumulative distribution’ of cost gap z, towards 

which the relative form of the industry’s state of technology has a tendency 

to approach in the long-run.  This distribution is a function only of the cost 

gap z and is totally independent of calendar time t.  Fig.6 illustrates this 

distribution. 

<Insert Fig.6 around here.> 
 As is seen from (21), the shape of  is determined completely by the 

basic parameters of our evolutionary model, γδ, µ, ν and λ, each 

representing the force of economic selection, of technological diffusion, of 

technological innovations and of scientific inventions.  (Since both γδ and µ 

represent equilibriating forces in our Schumpeterian dynamics, they always 

appear together in an additive form.)  It is not difficult to show that

~( )S z

28: 

                              
28 Let α ≡ν/(γδ+µ) and β ≡ λ/ν.  Then, these partial derivatives can be 
calculated as:  

=   > 0; 

 =   > 0 ;  

 < 0 .  

)(/)z(S~ µγδ∂∂ +
22/1)1(z/2/1)1(z/)1(z/1 ))e()e))((1(z/1(e( −−+++−− ++−− ααβααβααβ ααααβµ

∂ν∂ /)z(S~ 22/1)1(z/2/1)1(z/)1(z/ ))e()e)((e1( −−+++− +− ααβααβααβ αα

=∂λ∂ /)z(S~ 22/1)1(z/2/1)1(z/1 ))e()e)((/z)1(( −−++− ++− ααβααβ αααβαλ
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(22)  
)(

)z(S~

µγδ∂
∂

+
 > 0,  

∂ν
∂ )z(S~  > 0, and 

∂λ
∂ )z(S~

 < 0.  

As is illustrated in Fig.6, an increase in γδ+µ, an increase in ν, and a 
decrease in λ shift  counter-clockwise, thus rendering the distribution 

of efficiencies across firms less disperse than before. 

~( )S z

 The long-run cumulative distribution  thus deduced is a statistical 

summary of the way in which a multitude of technologies with diverse cost 

conditions are dispersed among all the existing capital stocks of the 

industry.  It shows that, while the on-going inventive activities are 

constantly reducing the potential unit cost, the unit costs of a majority of 

production methods actually in use lag far behind this potential one.  The 

state of technology therefore has no tendency to approach a classical or 

neoclassical equilibrium of uniform technology even in the long-run.  What 

it approaches over a long period of time is merely a ‘statistical equilibrium 

of technological disequilibria.’ 

~( )S z

 

7. The industry supply curve in the long-run. 

 Now, the fact that the state of technology retains the features of 

disequilibrium even in the long-run does have an important implication for 

the nature of the industry’s long-run supply curve.  For, as is seen by (4), 

the relative form of industry supply curve yt = Yt(Pt)b/Kt traces the shape of 

St(c), except for the portions of discontinuous jumps.  Hence, if the 

expectation of St(c) tends to exhibit a statistical regularity in the form of 
, the expectation of the relative form of the industry supply curve 

should also exhibit a statistical regularity in the same long-run form of 
.  Let us denote by p

~( )S z

~( )S z t the relative gap between a given product price Pt 

and the potential unit cost C(t), or 

(23)   pt ≡ logPt - logC(t), 

and call it the ‘price gap’ at time t.  Then, we can obtain the following 

proposition without paying any extra cost. 

Proposition (SC): Under Hypotheses (CG), (IM’), (PC) and (IN-a), the 

expected value of the relative supply curve of the industry yt = Yt(Pt)b/Kt 

will in the long-run approach a functional form of  

(24)  ≡  ~( )S pt
µγδ

ν

ν
µγδ λνµγδ

µγδ
ν

++
+

+

++

+ -
e)(1

1

/p)(- t
 .              � 
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<Insert Fig.7 around here.> 

 Fig.7 exhibits the relative form of the industry’s long-run supply curve as 

a function of price gap p.  As a matter of fact, it has been drawn simply by 

turning Fig.6 around 45° line.  It therefore moves clockwise as either of γδ+µ 

or ν increases or as λ decreases.  This implies that the long-run supply curve 

becomes flatter, as the joint equilibriating force of economic selection and 

technological diffusion or the disequilibriating force of creative-cum-

destructive innovations becomes stronger, or as the outside force of 

inventions becomes weaker. 

 What is most striking about this long-run supply curve, however, is not 

that it is the “sixth” logistic curve we have encountered in this paper but 

that it is an upward-sloping supply curve! 

 Let us recall the lower panel of Fig.1 of the introductory section.  It 

reproduced a typical shape of the long-run supply curve which can be found 

in any textbook of economics.  This horizontal curve was supposed to 

describe the long-run state of the industry in which the least cost technology 

is available to every firm in the industry and all the opportunities for 

positive profits are completely wiped out.  However, the relative form of the 

long-run supply curve we have drawn in Fig.7 has nothing to do with such 

traditional picture.  There will always be a multitude of diverse technologies 

with different cost conditions, and the industry supply curve will never lose 

an upward-sloping tendency, just as in the case of the ‘short-run’ supply 

curve of the upper panel of Fig.1.  There are, therefore, always some firms 

which are capable of earning positive profits, no matter how competitive the 

industry is and no matter how long it is run. 

 We can thus conclude that positive profits are not only the short-run 

phenomenon but also the long-run phenomenon of our Schumpeterian 

industry.  It is true that the positivity of profits is a symptom of 

disequilibrium.  But, if the industry will approach only a statistical 

equilibrium of technological disequilibria, it will never stop generating 

positive profits from within even in the never-never-land of long-run. 

 

8. The determination of the long-run profit rate. 
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 It is one thing to demonstrate the existence of positive profits in the long-

run.  It is, however, another to analyze the factors which determine the long-

run profit rate. 

<Insert Fig.8 around here.> 

 Let us then look at Fig.8 which superimposes a demand curve on Fig.7.   If 

we suppose that this demand curve is shifting to the right at the same rate as 

that of the industry’s total capital stock and shifting to the bottom at the 

same rate as that of the potential unit cost, its relative form will become 

invariant over time.  The intersection e* of such relative demand curve with 

the long-run relative supply curve then determines the long-run equilibrium 
price gap p* and the long-run equilibrium output-capacity ratio y* = .   

Since we have approximated the profit rate (Pq-cl)/Pk of each technology by 

b(logP-logc), we can also express it as b((logP-C(t))-(logc-C(t))) = b(p-z).  

This is nothing but the vertical distance between a given price gap and the 

upward-sloping supply curve.  Integrating these individual profit rates from 
z = 0 to z = p

~( *S p )

* with their capital shares ≡  as relative weights, we 

can finally calculate the long-run profit rate r

~( )s z ~ ( )′S z
* of the industry as a whole.  

Graphically, it can be represented by the shaded area 0e*y* in Fig.8.  

Algebraically, it can be expressed as29: 

(25)   r* =  = b p z s z dzp ( )~( )*
* −∫0 ))y)(1log()y1log((b)( **

ν
µγδ

λ
νµγδ +

+−−−
++   

                 > 0. 

We have thus succeeded in giving a complete characterization of the long-

run profit rate of our Schumpeterian industry.  It is positive, indeed. 

 It is now time to do some comparative dynamics.  First, demand effects.  It 

does not require any graphical explanation to see that an upward shift of the 

relative demand curve raises y*, because the supply curve is upward-sloping.  

This of course works to increase the long-run profit rate of the industry r*.  

In fact, a differentiation of (26) with respect to y* leads to: 

(26) ∂
∂

r
y

*

*
 = )

)/(y
1

y1
1(b)(

** µγδνλ
νµγδ

++
+

−

++  > 0 . 

                              

S29 The derivation is as follows.  r* =  =  = 

= , 

where α ≡ν/(γδ+µ) and β ≡ λ/ν.  We can solve this integral to obtain (26).  

dz)z(S~b
*p

0∫ b S dz/dS dS p ~( ~ ) ~~( *)
0∫

S~d)))S~)(S~1/(((S~b
*)p(S~

0∫ +− ααβ S~d))S~(/)S~1(/1))(1(/(b
*)p(S~

0∫ +−−+ ααααβ
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A further differentiation of (26) leads to: 

(27)  ∂
∂

2

2

r
y

*

*
 = )

))/(y(
1

)y1(
1(b)(

2*2* µγδνλ
νµγδ

++
+

−

++  > 0 .c 

The industry’s long-run profit rate r* is thus seen to be an increasing and 

convex function of the equilibrium output-capacity ratio y*. 

This convex relationship between long-run profit rate and output-capital 

ratio would have a particularly important implication for the dynamic 

stability, or more appropriately, dynamic instability of our Schumpeterian 

economy.  For Hypothesis (CG) immediately implies that the growth rate of 

fixed investment also becomes on average an increasing and convex function 

of output-capacity ratio, which is very likely to violate the stability 

condition for investment-saving equilibrium of the economy as a whole.  In 

the present paper, however, we can only mention this possibility in passing 

and must resume our comparative dynamics. 

 Next, let us turn to the supply side and examine the effects of a shift of the 

long-run supply curve on the industry’s long-run profit rate.  This, however, 

turns out to be a far more involved exercise than that on the demand effects, 

because the results depend on the .  I will therefore relegate the detailed 

discussions to Appendix and only summarize the results obtained therein.   

 When the relative demand curve is perfectly elastic, we have: 

(28) .const*p
*

)(
r

=
+ µγδ∂

∂   > 0,  .const*p
*r

=
∂ν
∂ > 0  and .const*p

*r
=

∂λ
∂   < 0 . 

In this case, an intensification of either the joint equilibriating force of 

economic selection and technological diffusion or the disequilibriating force 

of innovations raises the profit rate of the industry in the long-run, whereas 

an increase in the outside force of inventions reduces it in the long-run.  

 When, on the other hand, the relative demand curve is absolutely 

inelastic, we have:  

(30) .const*y
*

)(
r

=
+ µγδ∂

∂   > 0   for not so small y* and not so large α, 

            .const*y
*r

=
∂ν
∂ < 0,  and   .const*y

*r
=

∂λ
∂   > 0 . 

In this case, as the disequilibriating force of creative-cum-destructive 

innovations becomes stronger than the equilibriating force of economic 

selection or swarm-like imitations, or as the average rate of cost reduction of 

each innovation becomes greater, the industry is expected to generate a 
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higher profit rate in the long-run.  Innovation is not only the source of 

short-run profits but also the source of long-run profits in an industry with 

inelastic demand. 

 Finally, when the relative demand is neither perfectly elastic nor 

absolutely inelastic, we have: 

(31) ∂
∂α
r*

> (<) 0 and ∂
∂β
r*

 > (<) 0, when demand curve is inelastic (elastic). 

In this general case, as the disequilibriating force of creative-cum-

destructive innovations becomes stronger than the equilibriating forces of 

economic selection and swarm-like imitations, or as the average rate of cost 

reduction of each innovation becomes greater, the industry is expected to 

generate a higher profit rate in the long-run, as long as the price-elasticity 

of demand curve is not so large.  However, this tendency will be reversed 

when the elasticity of industry demand curve becomes sufficiently large. 

 

9. Pseudo aggregate production functions. 

 Since the pioneering works of Solow [1956, 1957], it has become the 

standard method of neoclassical economics to use the concept of an 

‘aggregate production function’ in accounting the sources of economic 

growth.  It allows economists to decompose variations in GNP into those due 

to movements along the aggregate production function and those due to 

shifts of the aggregate production function itself.  The former can be 

attributed to changes in measurable inputs, usually capital and labor, and 

the latter to changes in technology, an unobservable variable usually 

inferred from the data as a residual.   Early empirical studies of the long-

term aggregate growth in advanced capitalist economies found that only a 

very small portion of the GNP growth can be accounted for by increases in 

capital and labor, most of the growth being explained by technological 

progress – an increase in the residual factor.   More recent efforts by 

Maddison [1987] and others, however, have succeeded in reducing the size of 

the residual factor substantially by incorporating variations in the qualities 

of capital and labor and other supplementary effects.   

 The “success” of the neoclassical growth accounting exercises is quite 

impressive.  The challenge to any theory claiming to challenge the 
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neoclassical orthodoxy is therefore to match its power of tracking down the 

empirical patterns of the aggregate growth processes of advanced capitalist 

economies.  The most straightforward way to do this is, of course, to set up 

an empirical study of our own.  But in order not to lengthen this already 

lengthy paper, I choose a short-cut.  The purpose of this section is to 

demonstrate that our evolutionary model is capable of ‘calibrating’ all the 

characteristics of neoclassical aggregate production function both in the 

short-run and in the long-run.30  If neoclassical growth model is capable of 

accounting the actual aggregate growth paths of advanced capitalist 

economies, then our evolutionary model is equally capable of performing the 

same task.  There is no way to differentiate these two models empirically at 

the macroscopic level.  Moreover, our evolutionary model has a decided 

advantage over the neoclassical model in its ability to integrate 

microeconomic processes with macroeconomic phenomena.  While the 

neoclassical growth theory simply ignores the complexity of the growth 

processes we daily observe at the microscopic level, its recognition is the 

very starting point of our evolutionary model. 

 Let me begin this ‘calibration’ exercise by computing the amount of labor 

employment for each level of product demand.  When product demand is 

small so that price Pt just covers the minimum unit cost cn, only the first-

best technology firms can engage in production and the level of product 

demand determines that of output Yt.  Because of the fixed proportion 

technology (1), the level of total employment Lt associated with this output is 

cnYt.  When the demand reaches the total capacity of the best technology 

kt(cn)/b = st(cn)Kt/b, a further increase in demand is absorbed solely by an 

increase in Pt, while output is kept at the capacity level.  But when Pt reaches 

cn-1, the second-best technology firms start to produce and all the increase in 

demand is absorbed by a corresponding increase in output.  The relation 

between output and employment can then be given by Lt = cnst(cn)Kt/b+cn-

1(Yt-st(cn)Kt/b) until Yt reaches the total productive capacity of the first- and 

second-best technology firms (st(cn)+st(cn-1))Kt/b.   In general, the relation 
between Yt and Lt can be given by Lt = Kc s cj t jj n

j i ( )=
=∑ t/b+ci-1 (Yt-

                              
30 In this sense, this section follows up the simulation exercises of Nelson and Winter in 

[1974] and chap. 9 of [1982].   
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s ct jj n
j i ( )=
=∑ Kt/b) ≡ +ccdS c K /bt

i
t

c ( )0∫ i -1(Yt-St(ci)Kt/b) whenever S(ci)Kt/b ≤ Yt < 

S(ci-1)Kt/b.  If we divide this relation by Kt/b and take its inverse, we can 

construct a functional relation between the industry-wide labor-capacity 

ratio lt ≡ Ltb/Kt and the industry-wide output-capacity ratio yt ≡ Ytb/Kt as: 

(32)  yt = ft(lt) ,   
where l ≡ +ccdS ct

ic ( )0∫ i -1(ft(l)-St(ci)) whenever St(ci) ≤ ft(l)< St(ci-1).    

<Insert Fig. 9 around here.>  

 Fig.9 depicts this functional relation in a Cartesian diagram which 

measures labor-capacity ratio l along horizontal axis and output-capacity 

ratio y along a vertical axis.  It is evident that this relation satisfies all the 

properties a neoclassical production function is supposed to satisfy.31  Y is 

linearly homogeneous in L and K, because y ≡ Yb/K is a function only of l ≡ 

Lb/K.  Though not smooth, this relation also allows a substitution between Kt 

and Lt and satisfies the marginal productivity principle: ∂ -yt/∂lt ≤ 1/Pt ≤ 

∂+yt/∂lt.  (Here, 1/Pt represents a real wage rate because of our choice of 

money wage rate as the numeraire, and ∂ -y/∂l and ∂+y/∂l represent left- and 

right-partial differential, respectively.)  Yet, the important point is that this 

is not a production function in the proper sense of the word.  It is a mere 

theoretical construct that has little to do with the actual technological 

conditions of the individual firms working in the industry.  As a matter of 

fact, the technology each firm uses is a Leontief-type fixed proportion 

technology (1) which does not allow any capital/labor substitution.  It is in 

this sense that we call the relation (32) a ‘short-run pseudo aggregate 

production function,’ with an emphasis on the adjective: ‘pseudo.’ 

The shape of the short-run pseudo production function y = ft(l) is 

determined by a distribution of capital shares {St(ci)} across technologies.  

Hence, as this distribution changes, the shape of this short-run function also 

changes.  And in our Schumpeterian industry, the distribution of capital 

shares is incessantly changing over time as the result of dynamic interplay 

among capital growth, technological innovation and technological imitation.  

                              
31  See Sato [1975] for the general discussions on the aggregation of micro production 
functions.   
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The most conspicuous feature of the short-run pseudo production function 

is, therefore, its instability. 

In the long-run, however, we know we can detect a certain statistical 

regularity in the distribution of capital shares {St(ci)} out of its seemingly 

unpredictable movement.  We can thus expect to detect a certain statistical 

regularity in the pseudo production function as well out of its seemingly 
unpredictable movement.   Let  and  denote the expectation of labor-

capacity ratio l ≡ Lb/K and of output-capacity ratio y ≡ Yb/K, respectively.  

Then, we indeed arrive at

l̂ $y

32:  

Proposition (PF):  Under Hypotheses (CG), (IM’), (PC) and (IN-a), the 

functional relationship between the expected labor-capacity ratio and the 

expected output-capacity ratio will in the long-run take the form of : 
(33)  = , $y )el̂(f~ tλ

where the function is defined implicitly by the following identity: ~( )f ⋅

(34)  leλ t ≡ dy)
)y1(

y( 1)tle(f~

0
α

βαλ

α
α +∫ −

+ .                    � 

<Insert Fig. 10 around here.> 

 At the seventh time, we have finally graduated from the tyranny of logistic 

equations!  What we have obtained here is a well-behaved function which 

satisfies all the characteristics a neoclassical production function should 
have.  Indeed, it is not hard to show that = 0,  0 , < 0.~( )f 0 ~ ( )′ ⋅f > ~ ( )′′ ⋅f 33  It is 

as if total labor force L and total capital stock K produce the total output Y 
in accordance with an aggregate neoclassical production function  with 

pure labor augmenting (or Harrod-neutral) technological progress .   It 

is, in other words, as if we had entered the Solovian world of neoclassical 

)(f~ ⋅
teλ

                              

z S

)

)2

32 The derivation of this Proposition is as follows.  Since the short-run ‘pseudo’ 
production function (27) implies that l =  whenever y = ScdS ct

P ( )0∫ t(P), we have  = 

 whenever  = .  But from (21) we then have  =  

=  = e

l̂

cdS ct
P $ ( )0∫ $y $ ( )S pt l̂ cdS zP ~( )0∫

e dSz C tp +∫ log ( ) ~( )0
-λt e dS zzp ~( )0∫  = e-λt e dz SS p ( ~ )~( ) ~

0∫   

= e-λt (( ~ ) ( ( ~ ))) ~( )~( ) α α αβ α+ −∫ +S / S dS/S p 1 1
0  and  = .   Putting these two 

relations together, we obtain (29). 
$y $( )S p

33 More precisely, we have  = ((  > 0  and 

 =  < 0 . 

)le(dy/d tλ ) ( ( ))) (α α αβ α+ − − +y / y /1 1

2t2 )le(y/dd λ − + − −− + −β α α αβ α(( ) ( ( ))) (( )y / y / y/1 11 1
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economic growth where the economy’s growth process could be decomposed 

into the capital-labor substitution along an aggregate neoclassical 

production function and the constant outward shift of the aggregate 

neoclassical production function itself.  This is, however, a mere statistical 

illusion!   If we zoomed into the microscopic level of the economy, what we 

would find is the complex and dynamic interactions among many a firm’s 

capital growth, technological imitation and technological innovation.  In fact, 
as is seen from (34), the functional form of  is a complex amalgam of 

such basic parameters of our Schumpeterian model as γδ, µ, ν and λ.  It is 

just impossible to disentangle various microscopic forces represented by 

these parameters and decompose the overall growth process into a movement 

along a well-defined aggregate production function and an outward shift of 

the function itself.

~( )f ⋅

34  Indeed, it is not hard to show that both an increase in α 
≡ ν/(γδ+µ) and in β ≡ λ/ν shift the function  in the downward direction,~( )f ⋅ 35 or 

(35)     
∂
∂α
 f( )~

⋅
< 0    and   

∂
∂β
 f( )~ ⋅

< 0  . 

We are after all living in a Schumpeterian world where the incessant 

reproduction of technological disequilibria prevents the aggregate relation 

between capital and labor from collapsing into the fixed proportion 

technology of individual firms.  It is, in other words, its non-neoclassical 

features that give rise to the illusion that the industry is behaving like a 

neoclassical growth model.  It is for this reason we will call the relation (33) 

‘long-run pseudo aggregate production function.’  

 

10. Concluding remarks. 

                              

S

34 It is true that in the present model the rate of pure labor augmenting technical 
progress in our pseudo aggregate production function is a given constant λ which is 
determined exogenously by inventive activities outside of the industry.  However, in 
some of the models presented in a companion paper (Iwai [2000]) this rate becomes also 
an amalgam of the parameters representing the forces of economic selection, 
technological diffusion and recurrent innovations. 
35 This can be shown as follows.  Let us differentiate (34) (or an equivalent expression 
given in note 32) with respect to α.  We then have: 

  Since  is an inverse function of  

and  by (23), we have .  Hence, we have  as in (35).  
We can also show that  in exactly the same manner.  

0 0= + ∫e f/ e z S / dz S z SS( ~ ) ( ~ )~~ ( ( ~ ) ) ~.∂ ∂α ∂ ∂α z S( ~ ) ~( )S z

∂ ∂α~( )S z / < 0 ∂ ∂αz S /( ~ ) > 0 ∂ ∂α~f/ < 0
∂ ∂β~f/ < 0
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In the traditional economic theory, whether classical or neoclassical, the 

long-run state of the economy is an equilibrium state and the long-run 

profits are equilibrium phenomena.  If there is a theory of long-run profits, 

it must be a theory about the determination of the normal rate of profit.   

This paper has challenged this long-held tradition in economics.  It has 

introduced a simple evolutionary model which is capable of analyzing the 

evolutionary process of the state of technology as a dynamic interplay among 

many a firm’s growth, imitation and innovation activities.  And it has 

demonstrated that what the economy will approach over a long passage of 

time is not a classical or neoclassical equilibrium of uniform technology but 

a statistical equilibrium of technological disequilibria which maintains a 

relative dispersion of efficiencies in a statistically balanced form.  Positive 

profits will never disappear from the economy no matter how long it is run.  

‘Disequilibrium’ theory of ‘long-run profits’ is by no means a contradiction 

in terms.  

 Not only is a disequilibrium theory of long-run profits possible, but it is 

also ‘operational.’   Indeed, our evolutionary model has allowed us to 

calculate (only with pencils and paper) the economy’s long-run profit rate as 

an explicit function of the model’s basic parameters representing the 

microscopic forces of economic selection, technological imitation, recurrent 

innovation and steady invention.   “Without development there is no profit, 

without profit no development,” to quote Joseph Schumpeter once more.36   

The model we have presented in this paper can thus serve as a foundation, or 

at least as a building block, of the theory of ‘long-run development through 

short-run fluctuations’ or ‘growth through cycles.’   To work out such a 

theory in more detail is of course an agenda for the future research. 

 

 

<Appendix: Comparative dynamics of supply-side determinants of the long-

run profit rate>  

<Appendix: Comparative dynamics of supply-side determinants of long-run profit 

rate>  
 
 The purpose of this Appendix is to deduce (29), (30) and (31). 
                              
36 Schumpeter [1961], p. 154. 
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Consider first the case of perfectly elastic demand curve.  Fig. A1 juxtaposes a 
horizontal demand curve on the relative form of a long-run supply curve. We already 
know from section 8 that an increase in either α or β moves the supply curve counter-
clockwise.  As is seen from Fig. A1, such a supply curve shift transfers the equilibrium 
point from e* to e** along the horizontal demand curve and squeezes the long-run profit 
rate by the magnitude equal to A ≡ 0e*e**.  We can easily confirm this graphical 
exposition by differentiating (26) with respect to α and β, keeping p* constant.  

(A1) ∂
∂α
r

p const
*

* .=  = b S z dzp ∂
∂α

~( )*
0∫ ≡ -Aα

           = −
+

− −

+
∫

− +

β
α α αβ

b u
u

du
e y /( )

log
( )( * ) ( )1

1
1 2

1
1

u  < 0 ; 

      ∂
∂β
r

p const
*

* .=   = b S z dzp ∂
∂β

~( )*
0∫ ≡ -Aβ

           = −
+ − −

+
∫

− +

( ) log
( )( * ) ( )

1 1
1 2

1
1

β
αβ αβ

b u
u

du
e y /

u  < 0  . 

This is nothing but (29) of the text.  Note also that since > 0, ∂ν∂ /)z(S~ .const*p
*r

=
∂ν
∂ > 0. 

<Insert Fig. A1 around here.> 
 Next, consider the case of absolutely inelastic demand curve.  As is shown in Fig. 

A2 which juxtaposes a vertical demand curve on the relative form of a long-run supply 
curve, an increase in either α or β moves the latter counter-clockwise and transfers the 
equilibrium point from e* to e** along the vertical demand curve.  This raises p* to p**, 
while keeping y* the same as before.  The long-run profit rate thus changes from 0e*p* to 
0e**p**.  In order to see whether this amounts to an increase or decrease of r*, Fig. A2 
decomposes this change of profit rate into two components -- A≡ 0e*e** and B≡ p*e*e**p**.  
The first component A represents the “loss” of profit rate due to a universal increase of 
cost gaps, which corresponds to the profit loss A of the previous case.  In the present 
case of absolutely inelastic demand curve, however, an increase in the long-run 
equilibrium price gap gives rise to a “gain” of profit rate, as is represented by the second 
component B.  Whether r* increases or decreases thus depends on whether A is smaller 
or larger than B.  This can be checked by differentiating (26) with respect to α and β, 
keeping y* constant.   We have: 

(A2) ∂
∂α
r

y const
*

* .=  = b S z dz by S yS y ∂
∂α

∂
∂α

~( ) ~ (~ ( ) *
*

*
0

11−
∫ +

− ) ≡ -Aα+Bα

      = ))
y

y)y1(log()1())y1log()y1log(((
)1(

b
*

***
*

2 +
−++−+−−−

+ αα
αα

α
α

α
β   ; 

      .const*y
*r

=
∂β
∂  = b S z dz by S yS y ∂

∂β
∂

∂β

~( ) ~ (~ ( *
*

*)
0

11−
∫ +

)−
≡ -Aβ+Bβ

  = −
+

− + +( )(log( ) log( ))*
*α

α
α

α
b y y

1
1 1  > 0 . 

Although both )y1log()y1log(
*

*
α

α +−−−  > 0 and )
y

y)y1(log()1( *

**

+
−++

αα
αα  are 

positive in the first expression, the former dominates the latter if we let α → 0.  Since α 
≡ ν/(γδ+µ) is assumed to be small, it does not seem unreasonable to suppose the first 
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expression to be positive.  The second expression is always positive.  Hence, (30) of the 

main text.  Note that we can also calculate .const*y
*r

=
∂ν
∂  as 

))
y

y)y1(log()
y

y)y1log(((
)1(
b

*

**

*

*
*

2

2

+
−+−

+
−−−

+

−

ααα
α

α
βα   <  0. 

 
 <Insert Fig. A2 around here.> 

 Finally, let us consider the general case where industry demand curve is neither 
perfectly elastic nor absolutely inelastic.  As is seen from Fig. A3, an increase in either α 
or β transfers the equilibrium point upward from e* to e** along this downward-sloping 
demand curve.  This raises p* to p** but lowers y* to y**, thereby changing r* from 0e*y* 
to 0e**y**.  We can decompose this change again into A ≡ 0e*e** and ′B  ≡ p*e*e**p**.   A 
represents the “loss” of r* due to a universal increase of cost gaps, and B represents the 
“gain” due to an increase in the long-run equilibrium price gap.  However, ′B  in Fig. A3 
is not as large as B in Fig. A2, for the price elasticity of the demand allows the effect of 
cost increases to be absorbed not only by price hike but also by quantity reduction.  This 
means that when the demand curve is steeply sloped, the gain ′B  is likely to outweight 
the loss A.   But, when the demand curve becomes more elastic, ′B  becomes smaller, and 
in the limiting case of perfectly elastic demand curve it shrinks to zero. 

<Insert Fig. A3 around here.> 
 This graphical explanation can be formalized as follows.  First write down the 
relative form of industry demand function as yt = .  Then, p~(D pt )

)*

)

)

* is determined by the 

supply-demand equation: .  Differentiating this with respect to α and β 

and rearranging terms, we have:  and 

, where ε and η are the price-elasticity of the 
supply curve and of the demand curve, respectively defined as (  
and - ( .  Keeping this in mind and differentiating (24), we obtain: 

~( ) ~(*S p D p=

∂ ∂α ∂ ∂α ε ηp / p S p / /* * *~( ) ) (= − +

∂ ∂β ∂ ∂β ε ηp / p S p / /* * *(( ~( ) ) (= − +
~( ) ) ( ~( ) )∂ ∂S p / p / S p /p

~( ) ) ( ~( ) )∂ ∂D p / p / D p /p
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1 1−
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−
+

 ≡ -Aβ+  . ′B β

Note that the component ′B  in either expression is decreasing in η.  In particular, when 

η = ∞, ′B  becomes equal to 0; when η = 0, ′B  becomes equal to B in (A2).   Hence, we 

have obtained (31) of the text.
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Fig. 1: Industry supply curve in the short-run and in the long-run.
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Fig. 3 : Relative form of industry supply curve.  
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Fig. 7 : Long-run industry supply curve.   
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Fig. 8 : Determination of long-run profit rate. 
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Fig. 9 : Short-run ‘pseudo’ aggregate production function. 
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Fig. 10 : Long-run ‘pseudo’ aggregate production function. 
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Fig. A1:  The case of perfectly elastic demand curve. 
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Fig. A2 : The case of absolutely inelastic demand curve. 
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Fig. A3 : The general case. 
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