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Business firms strive for survival and growth. They innovate in order to grow; they imitate in
order to survive. The purpose of this paper, the second in the series on Schumpeterian dynamics,
is to conmstruct a simple mathematical model which is capable of studying the evolution of an
industry’s state of technology as a dynamic outcome of the interactions among innovation,
imitation and capacity growth at the micro level of firms. The doctrine of ‘economic selection’
insists, by means of the analogy to the biological theory of natural selection, that only the most
efficient firms will survive the long-run competitive struggle for capacity growth. Indeed, if
neither innovation nor imitation is possible for the firm, a firm or a group of firms which is
lucky enough to start with the most efficient technology will outgrow all the other firms in the
long run. Once, however, the possibility of technological imitation is allowed for the firms, -the
industry will settle down to a static equilibrium of perfect technological knowledge, not by ‘the
success of the most efficient firms in their striving for the higher growth rate, but by the success
of the less efficient in their effort to imitate the others. The blind force of economic selection is
thus outwitted by the human force of imitative activities. Finally when firms are allowed to
innovate in their technology, the selective force of market competmon is no longer capable of
weeding out the less fit even in the long run. Indeed, it is shown in the present paper that the
dynamic interplay of the. processes of innovation, imitation and growth will keep the industry’s
state of technology from settling down to the static equilibrium but reproduce in the long run a
relative dispersion of efficiencies across firms in a statistically balanced form.

1. Introduction

Business firms strive for survival and growth. They innovate in order to
grow; they imitate in order to survive. Firms which fail to innovate or
imitate must go out of business or at least forego the opportunity to grow.

In the preceding paper (Part I: An evolutionary model of technological
innovation and imitation), we studied how the dynamic processes of firms’
innovation and imitation activities interact with each other and shape up the
evolutionary pattern of the state of technology of an industry as a whole.
We, however, did not take account of the differential impacts of such diverse
technological developments among firms on their growth capabilities and the
consequent repercussions on the evolutionary pattern of the state of
technology itself. The first purpose of this paper, the second in the series on
Schumpeterian dynamics, is to explore the evolution of the industry’s state of
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technology as a dynamic outcome of the interactions between technological
developments and growth processes at the micro level of firms.!

In his (too) well-known article on the methodology of positive economics,
Milton Friedman (1953, p. 22) wrote:

‘...unless the behavior of businessmen.in some way or other appro-
ximated behavior consistent with the maximization of returns, it seems
unlikely that they would remain in business for long. Let the apparent
immediate determinant of business behavior be anything at all —
habitual reaction, random chance, or whatnot. Whenever this determi-
nant happens to lead to behavior consistent with rational and informed
maximization of returns, the business will prosper and acquire resources
with which to expand; whenever it does not, the business will tend to
lose resources and can be kept in existence only by the addition of
resources from outside. The process of “natural selection” thus helps to
validate the hypothesis — or, rather, given natural selection, acceptance
of the hypothesis can be based largely on the judgment that it
summarizes appropriately the conditions for survival.’

It is thus argued here that the force of competition, in particular, the force of
dynamic competition for the acquisition of resources for growth is strong
enough to ensure the survival and eventual dominance of the most efficient
firms, whether their actions are guided by conscious maximization of returns
or resulted from pure chance mechanism. It is the analogy between the
biological competitive process in natural environment and the inter-firm
competitive process in economic environment which has always been invoked
in this kind of argument.? It is easy to claim metaphysically that only the
fittest survives in the long run. It is, however, another matter to examine
whether the logic of natural selection in biological evolutionary theory is
indeed applicable to the description of the process of inter-firm competition
for survival and growth in a genuinely economic environment. The second
purpose of the .present paper is to put the above ‘economic selection’
argument to scientific scrutiny, on the basis of our explicitly ‘economic’
model of evolutionary processes of firm growth and technological
development.

2. State of technology

Let us begin by representing the ‘state” of technology’ of an industry at a
given point in time.

Suppose, as in the preceding paper, that there exist n distinct production

1See Nelson and Winter (1982) for related theoretical attempt in this direction.

2Besides Friedman (1953), Alchian (1950) developed a similar argument concerning the

applicability of the doctrine of natural selection to the economic processes. See Winter (1975) for
a perceptive criticism of this kind of argument.
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methods coexisting in the industry at a given point in time. (The number of
production methods, n, will of course change, i.c., increase over time as firms
succeed in bringing new production methods into the industry.) Each
production method is assumed to be of fixed proportion type, so that the
unit cost is constant up to its productive capacity. If we denote by ¢ the unit
cost in terms of numeraire, all the existing production methods can be
arrayed in accordance with their unit costs as follows:

Cr<Cpo1<...<C;<...<Cy,

where ¢, is the unit cost of the best practice method and ¢, that of the worst
production method. Suppose, further, that the industry consists of M firins,
“including both active and potential producers. The cost conditions, of course,
vary from firm to firm. Then, let f,(c;) represent the relative frequency of
firms with unit cost equal to ¢; at time ¢, and let F,(c;)=)"7_; fi(c;) represent
the relative frequency of firms with unit costs ¢; or less at time t. We call f,(c)
the frequency function and F,(c) the cumulative frequency function of unit
costs at time ¢.

In the preceding paper we could represent the state of technology of an
industry by f;(c) or, equivalently, by F,(c) alone. However, as soon as we take
into consideration the dynamic interplays between firms’ technological activ-
ities and their growth strategies, it is no longer sufficient to look at f,(c) or
F,(c) alone in evaluating the industry’s state of techmnology. It becomes
necessary to study how the industry’s total productive capacity is distributed
over different production methods with different unit costs. Accordingly, let
k.(c;) represent the total volume of productive capacities with unit cost equal
to ¢; at time ¢, and let K,=)"_, k,(c;) be the total productive capacity of the
industry as a whole at time t. [There is no logical difficulty in this calculation
of total productive capacity within the context of our present model. See
Sato (1975) for a useful discussion on the problem of capital aggregation.]
We can then define by k,(c;)/K, the capacity share of unit cost ¢; at time t.
We denote this by s,(c;) and call it the capacity share function. We then
denote by S,(c;)=)_;s,(c;) the capacity share of unit costs from ¢, to ¢; at
time ¢, and call it the cumulative capacity share function of unit costs. As a
real life example, we present in fig. 1 capacity share functions and frequency
functions of the metal stampings industry (SIC no. 3461) in 1958 and 1963.
(The lower half of fig. 1 has reproduced fig. 1 of the preceding paper.) In this
diagram, we have used the ratio of payrolls to value added as the proxy of
unit cost and the share of value added as the proxy of capacity share. We
have chosen the metal stampings industry among more than four hundred
U.S. industries merely because it exhibits a fairly typical pattern of the state
of technology.

Note in passing that the ratio between the capacity share function and the
frequency function, i.., s,(c;)/ f,(c;), represents the average capacity size of the
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Fig. 1. The state of technology in metal stampings industry. Source: U.S. Department of
Commerce (1968), 1963 Census of Manufactures, establishments classified by ratio of payrolls
and value added. 1958 and 1963, MC 63(S)-8 (Government Printing Office, Washington, DC).
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firms with unit cost ¢ at time ¢ (in terms of the average capacity size of all
the firms in the industry).3 ,

The state of technology of an industry as a whole at a given point in tlme
is now represented by a pair-of frequency function f,(c) and capacity share
function s,(c) or, equivalently, by a pair of their cumulative counterparts,
F,(c) and S,(c). The task of this paper then is to study how the state of
technology, thus represented, evolves over time as a dynamic consequence of
the complex interplay of innovation, imitation and growth processes of firms
in an industry.

3. A model of firm growth

There are basically two causal mechanisms through which successful
innovation or imitation leads to the growth of the firm. In the first place, a
successful innovation or imitation and the consequent cost reduction allow
the firm to lower the price of its product. In fact, the firm may choose to
keep the profit margin constant and reduce the price proportionally to the
cost reduction. This has the effect of lowering the price of its product relative
to the less fortunate ones and directly promote the growth of its sales
volume. Then, the growth of productive capacity follows suit. Alternatively, a
successful innovation or imitation may allow the firm to increase its profit
margin earned on each sales dollar and raise the rate of profit on the existing
productive capacity. Such an increase in profit rate stimulates the firm’s
investment in productive capacity, either by influencing the expected profita-
bility of investment or, to the extent that capital markets are imperfect, by
directly providing an internal fund for investment projects.*

Tt is possible to translate these causal mechanisms into several simple
mathematical structures. However, in order not to complicate the exposition,
we shall discuss only the simplest model in the main text of thls paper,
leaving the discussion of alternatives to appendix A.

We shall consider. an industry which consists of many firms producing an
identical product. (This industry is exactly what we usually call a ‘perfectly
competitive’ industry.) A firm in this industry is unable to control the price
of its ownh product and takes the prevailing market price as given. It then
follows that a firm successful in innovation or imitation necessarily ex-
periences an increase in its profit margin, which works to stimulate its capital
investment. The first causal mechanism from technological progress to
capacity growth is thus ignored, and only the second one will be studied
explicitly in what follows.®

3We shall discuss the long-run properties of the distribution of average capacity size in section 7.

“Scherer, for instance, found in his empirical study (1965) the prevalence of the first causal
mechanism.

5The first example in appendix A deals with the first causal mechanism.
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Let p(t) be this market price prevailing at time t. [The discussion of how
this market price is determined at each point in time is postponed to the
following paper (Part III); the following story has a structure that is
independent of the way the market price is determined.] Then, we can
calculate the ‘profit margin’ of the firm whose unit cost equals ¢ at time ¢ as
(p(t)—c)/p(t), which we approximate as Inp(t)—Inc. (This is not a bad
approximation, as long as p(t) and ¢ are not so wide apart.) If we suppose
that the value ratio between output and capacity (or capital stock) varies
little from firm to firm as well as from time to time, this index of profit
margin can be regarded as a good proxy for the rate of profit for the firm.
(This is of course true only for the firm operating at full capacity. The rate of
profit of the firm operating below its capacity has to be adjusted by the
factor equal to its capacity utilization rate, and that of a firm which has
stopped producing is obviously zero.) There must therefore exist a positive
correlation between the rate of capacity growth of a firm and its current
profit margin, either through the latter’s influence on the expected future
profitability or as the latter’s being the internal fund for capital investment.
As a first-order approximation, we set up the following hypothesis:

Hypothesis (G). The rate of capacity growth of a firm whose unit cost is ¢
at time t is (approximately) equal to '

y-npH)—Inc)+ye, (1)

where y>0 is a positive constant representing the effect of the profit margin
and y, is a possibly negative constant which summarizes all the factors other
than profit margin, such as rates of interest, user’s costs, animal spirit, etc.,
which influence the firm’s investment policy.

Studies on the process of firm growth have in the past centered around the
so-called ‘Gibrat’s law of proportionate effect’ [Gibrat (1931)]. In its weakest
form, this is presented as an empirical law asserting that the expected growth
rate of a firm during a specific period is independent of the initial size of the
firm. It, in fact, claims that the current size of a firm is no more than a
cumulative result of the past growths and in itself has little causative role to
play in predicting the current growth rate of the firm. Hypothesis (G) given
above is compatible with this weakest form of Gibrat’s law, for it does not
have the firm size as the explanatory variable of the growth rate. However,

Gibrat’s law is usually formulated in a stronger form. In its strong form it

insists that the probability that a firm grows at a given rate is constant over
time and uniform across firms. Needless to say, our hypothesis (G) does
violate this strong version of Gibrat’s law. A firm, once successful in
innovation or imitation, is able to enjoy a higher growth rate at least for
some duration of time. In fact, hypothesis (G) implies that it is this
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sustenance of higher growth rate that is the reward of the success in
innovation or imitation. Empirical studies on firm growth processes have
almost invariably rejected the strong version of Gibrat’s law, although they
are often supportive of its weakest form.®

Now, most of the theoretical works on the size distribution of firms rely
on the strong version of Gibrat’s law. Starting from the premise that growth
rates of firms are governed completely by pure chance mechanism, they
deduce, as the long-run average size distribution of firms, a long-tailed, log-
normal or Yule distribution, which fits empirical distributions quite well.”
Relatively recent works of Ijiri and Simon attempt to extend these results by
incorporating serial correlation of growth rates, but they still leave the
stochastic mechanism governing the growth process of firms totally in the
black box.® Although the present paper is not concerned with explaining the
size distribution of firms, one of the objectives of the following investigation
is to connect the firm growth process to the outcomes of the competitive
struggles among firms for technological supremacy in an industry. It thus can
be regarded as an attempt at the endogenization of Gibrat’s law.

4. The logic of economic selection

We are now in a position to embark upon the detailed analysis of the
evolutionary process of an industry’s state of technology, under the combined
pressure of firms’ capacity growth, technological innovation and imitation. In
" order to put into relief the effect of the differential growth rates among firms
with diverse cost conditions, let us begin our analysis by ignoring the effects
of technological innovation and imitation. They will be introduced into the
analysis in the sections that will follow.

Now, under the supposition of no technological innovation and imitation,
the frequency function f;(c), and the cumulative frequency function, F,(c), of
unit costs are both invariant over time. Efficient firms are forever efficient,
and inefficient ones forever inefficient. The capacity share function s,(c) and
the cumulative capacity share function S,(c) do, however, change over time,
in reponse to different growth rates among firms. Their evolutionary patterns
must be studied in detail.

For this purpose, differentiate the definition of the capacity share function,
s,(c;)=k,(c;)/K,, with respect to time, and we obtain:

S.t(ci) —kt__(c’_)__ﬁ_kt(c;) _ n k.t(cj) ‘
m_k‘(c") K, k(c) i=1k(c;) si(c) ' (2

See, for example, Mansfield (1962), Steindl (1965), and Singh and Wittingenton (1968, 1975).
7See Hart and Prais (1956), Adelman (1958), and Ijiri and Simon (1977, chs. 1 and 7).
8jiri and Simon (1977, chs. 8, 9 and 11).
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where X=dx/dt. Since, in virtue of hypothesis (G) firms with the same unit
cost grow at the same rate irrespective of their capacity sizes, we can
substitute the expression (1) into k,(c;)/k,(c;) in eq. (2) and obtain

é%: —y+(Inc; —In&(t)), 9

where ¢(t) represents the industry-wide average unit cost at time ¢, defined by

Inc(t)= i s.(c;) Inc;. 4)

i=1

[This should not be confused with the notion of the potential unit cost C(%).]
The growth rate of the capacity share of a given unit cost, 5,(c;)/s,(c;), is thus
shown to be proportional to the extent of its relative advantage over the
industry average unit cost, —(Inc; —Inc(¢)). In other words, the lower the
unit cost relative to that industry average, the more rapidly will the
productive capacity with the unit cost gain its share; and the higher the unit
cost relative to the industry average, the speedier will the productive capacity
with that unit cost lose its share in the industry.

Now eq. (4) says that the share of productive capacities which have a ‘cost
advantage’ in the sense of ¢; <¢(f) grows at a rate which is proportional to
the relative size of that cost advantage. It thus appears to grow exponentially
at this rate over time and hence exceed any positive number eventually. But,
of course, the capacity share can never exceed unity by being a relative
fraction! Something was wrong with this reasoning, and it is not difficult to
locate where it went wrong. Indeed, it is only necessary to recall the
definition (4) of the average unit cost ¢&(f). It is plain from this that the
average unit cost is not a given constant, but a weighted geometrical average
of existing unit costs with weights being their corresponding capacity shares,
which grow or contract according to the very dynamic eq. (3) we are
analyzing. As time goes by, productive capacities with lower-than-average
unit costs grow relatively more than those with higher-than-average unit
costs. This has an effect of shifting weights in favor of lower-than-average
unit costs, thereby reducing the weighted averaged unit cost &(¢). Such a
decline of the average unit cost undercuts the existing unit costs one by one
‘and has these capacity shares contract until the productive capacities with
the least unit cost dominate the entire industry and hence the value of the
average unit cost is reduced to the level of this least unit cost.

In order to formalize the above argument more rigorously, let us differen-
tiate the definition (4) of the average unit cost logarithmically with respect to
time. We then have
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dinc(y) &0 & ..
—E{——Ea—igllnci 5,(c;).

Substituting eq. (3) for the growth rate of capacity share and re-arranging
terms, we obtain that

O ii (Inc¢; —In &(8)* - s,(c;)- )

=1

Hence, the rate of decrease in the average unit cost, —&(£)/é(t), is propor-
tional to the ‘weighted variance’ of the logarithmic values of unit costs. The
average unit cost therefore keeps declining as long as the shares of the firms
which do not have the least cost technique are non-negligible. It stops
declining only when the share of the least cost firms approaches unity and
the cross-section variance of unit costs becomes zero. The only possible long-
run equilibrium in this model without technological progress is the situation
in which the least cost firms dominate the entire industry, by outgrowing all
the other firms. Only the most efficient survive in the long run. This is
precisely the world of ‘the survival of the fittest’, in which the logic of
‘economic selection’ has the complete upperhand. Indeed, eq. (5) is formally
equivalent to what biological evolutionary theorists and population geneti-
cists call the ‘fundamental equation of natural selection’. This equation was
first derived by R. A. Fisher and has since been playing a fundamental role
in the theory of natural selection in biology.” We may, accordingly, call our
eq. (5) the ‘fundamental equation of economic selection’. In the economic
world with neither innovation nor imitation the logic of economic selection is
exactly that of natural selection.

In the following sections, however, we shall examine whether the doctrine
of economic selection itself is able to survive once the processes of imitation
and innovation are explicitly introduced into our evolutionary model of the
industry. As a preparation for this task, we find it convenient to reformulate
the logic of economic selection from a slightly different angle.

This time, let us differentiate the cumulative capacity share function with
respect to time. We then obtain

Sie)= Y, ide))= ¥ {—ylinc,~Ine)-s(c)}

Jj=i

=[v-6.(c:)]Si(ci) - [1—=S(ci)], . (6)

SFisher (1958). See, for example, Crow and Kimura (1970) for the more recent treatment of
the fundamental equation of the natural selection.
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where J,(c;) >0 is defined by

(e)='3 Ine, s(c) / ¥ sie)= 3 ne, 5(c) / S, O

i
j= ji=i

for i=2,3,...,n. The function J,(c;) thus defined represents the difference
between the logarithmic average of the subset of unit costs which are at least
as high as ¢; _; and the logarithmic average among those which are at least
as low as ¢;. If the capacity share function has the form of a uniform
distribution, s,(c;)=1/n where Inc; is located at a«— i for i=1,2,...,n, then
0,(c;)=pn/2 for all i and t. Or, if the number of distinct unit costs is two,
0:(c;)=Inc; —Inc,. Although d,(c;) cannot be treated as a given constant in
general, we can still expect it to fluctuate little from one unit cost to another
and from one point in time to another. In fact, from now on, we proceed our
analysis as if the value of d,(c;) were a given positive constant, and substitute
for it a constant parameter 6 (>0). It should be borne in mind, however,
that this approximation is solely for expositional convenience. We have
already completed our discussion of the logic of economic selection once. In
any case, this approximation allows us to rewrite eq. (6) as

Si(c)=(0)-Si(c;) - [1=S,(cy)] for i=nn—1,..,1, (8)
which can be solved explicitly to yield

Si(e)=1/{1+(1/Sx(c;) 1) -exp [—(y0) - (t— T)]}, ©)

where T (<t) is a given initial time.

We have again encountered a ‘logistic growth equation’ we have so much
familiarized ourselves with in Part I of the present series of the papers. This
time, however, its derivation was based on an entirely different principle.

The upper half of fig. 2 illustrates how the force of economic selection,
working through differential growth rates between low cost and high cost
firms, sets in motion the family of cumulative capacity shares along logistic
growth paths. For instance, the capacity share of the least unit cost, S;(c,)=
s,(c,), can grow almost exponentially when it is small. But, as it begins to
occupy a non-negligible portion and the weights of the industry average unit
cost ¢(t) begin to shift towards the lower unit costs, the average unit cost ¢(z)
begins to decline as well, and the relative cost advantage of the least cost
firms gradually disappears. The capacity share of the least cost firms
therefore lags behind the exponential growth path of the initial stage, and
decelerates its growth momentum as it becomes larger and larger. It never
stops growing, however. With decelerating speed, it nonetheless approaches
unity asymptotically. The capacity shares (but not the cumulative capacity
shares) of the less efficient production methods, s,(c,_1),S;(Cs—2),---,5:(c1), on
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Fig. 2 The evolution of the state of technology under the sole pressure of economic selection.

the other hand, dwindle gradually over time (though some of them may grow
temporarily before they start dwindling) and disappear entirely in the long
run. As a comparison, the lower half of fig. 2 exhibits the movement of the
family “of cumulative frequencies of firms. In the industry with neither
innovation nor imitation, they remain constant forever.
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5. Imitation and economic Lamarckism

We shall now combine the model of economic selection we have so far
developed with the model of technological imitation and innovation we
presented in Part I of this series of papers. In the first place, let us recall the
following hypothesis which captures the so-called snow-ball effect or band-
wagon effect, characterizing the diffusion process of technology through
firms’ imitation activities.

Hypothesis (IM). The probability that a firm is able to copy a particular
production method is proportional to the share of total productive capacity
which employs that method in the period in question. The firm, of course,
implements only the method whose unit cost is lower than the one it is
currently using. Formally, this hypothesis says that the probability that a
firm with unit cost ¢; imitates a production method of unit cost ¢ during a
small time interval [t,t+ At] is equal to

us,(c)4t for c<c; and O for c=¢;, (10)

where u>0 is a parameter summarizing the effectiveness of the firm’s
imitation activity.

Hypothesis (IM’) we introduced in the preceding paper supposed that the
greater the number of firms employing a given production method the easier
for another firm to imitate that method, regardless of the size of those firms.
The new hypothesis (IM) proposed above has modified this hypothesis by
insisting that not only the number of the firms employing a production
method but also the size of each of these firms affects the easiness of
imitating that method. The secret of production method is more likely to
leak outside, as the more and more firms employ it and the larger and larger
they become. On the other hand, its own size does not provide the imitator
with any particular advantage in the probability of imitation, although, once
a better production method is successfully copied, the assumed disembodied
nature of technological change confers the proportionally larger fruits on the
larger size firm. .

Under the modified hypothesis (IM), it is not difficult to apply the
argument similar to the one given in section 2 of the preceding paper and
obtain the following differential equation which describes how the firms’
imitation activities move the industry’s cumulative share function:

St(ci)=ﬂ'St(ci)'[l_St(ci)]~ (11)

To see this, let us first note that the value of S,(c;) changes whenever one of
the firms whose unit costs are higher than c; succeeds in imitating one of the
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production methods with unit cost ¢; or less. In fact, it increases by the
magnitude equal to the capacity share of the imitator. [The value of S,(c;)
remains unperturbed so long as the pre-imitation unit cost of an imitator
was ¢; or less, for only an infra-marginal exchange of capacity shares is
effected in such a case.] Now, according to hypothesis (IM), the probability
that one of the firms with unit costs higher than ¢; can imitate one of the
production methods of unit costs ¢; or less is equal to pwe{sc;)+--+
+5,(c,)} - At=p-S,(c;)- 4t during a time interval [t,t+ 4t]. Hence, the ex-
pected increase in the value of S,(c;), due to a successful imitation of this
particular firm, during the same time interval, is equal to this probability
times the firm’s capacity share. Since the total capacity share of the firms
with unit costs higher than c; is by definition given by 1—S,(c;), the expected
increase in the value of S,(c;) to be brought about by a successful imitation
of one of those firms can be computed as (uS,(c;)4t)-(1—S,(c;)). The so-
called law of large numbers then allows us to use this as a good approxima-
tion of the actual increase in the value of S,(c;). If we divide this expression
by 4t and let At approach zero, we finally obtain eq. (11). This equation,
however, has not taken account of the effect of the differential growth rates
among firms with different cost conditions, which was described by eq. (8) of
the preceding section. If, therefore, we add (8) and (11), we obtain a new
logistic differential equation which describes the combined effect of the
processes of capacity growth and technological imitation,°

Sic)=(u+79)-S,(c;) [1—Si(c))]. (12)

Solving this explicitly, we obtain a new logistic growth path of the form

o Sde)=1/{1+(1/8¢(c;))— 1) exp [(u+po)(t—T)1}, (13)

for t=T. Under the combined pressure of capacity growth and technological
imitation, the cumulative capacity share function S,(c) will thus follow a
familiar logistic growth path, illustrated by the upper half of fig. 3. The only
formal difference from the preceding case of no technological imitation is
. that its growth parameter is now the sum of y6 and ¢ — the sum of the
parameter representing the effect of differential growth rates and the para-
meter representing the effect of the imitation process. In the long run,
therefore, the least cost production method will again completely dominate
the industry’s total productive capacity. [That is, S,(c,)—1 as t—0c0.]

The process of capacity growth and the process of technological imitation,
however, contribute to the logistic growth process of the cumulative capacity
share function for entirely opposite reasons. While, as was shown in the
preceding section, the former represents the force which tends to amass the

107t i easy to show that we can indeed add these two effects as long as time is continuous.
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Fig. 3. The evolution of the state of technology under the combined pressure of economic
selection and technological imitation.

industry’s productive capacities in the hands of few technologically advanced
firms through their maximal capability of capacity growth, the Ilatter
represents the force which dissipates the advantage of the low cost produc-
tion methods among all firms through their imitation efforts. While the
former represents a centralizing tendency, the latter represents a decentralizing
tendency of productive capacities.

—,
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In order to see in more detail how these two opposite tendencies will
interact with each other, let us now turn our attention to the evolutionary
pattern of the cumulative frequency function of unit costs, F,(c). Indeed, a
slight modification of the argument. employed in deducing the logistic
differential equation (11) leads us to the following differential equation:

Fe)=p-S/(c) (1=F(c;). (14)

Here, (1—F,(c;)) in the right-hand side represents the fraction of the firms
whose unit costs are higher than c;, and u-S,(c;) the probability per unit of
time that one of these firms succeeds in imitating one of the production
methods with unit cost ¢; or less. The expected rate of increase in the value
of F,(c;), therefore, equals their product, so that an application of the strong
law of large numbers gives us differential equation (14). As is shown in
appendix B, if eq. (14) is paired with (13), it is possible to solve it to deduce
the following explicit formula for the growth path of F,(c):

Fi(c;)=1—(1—=F(c;){(1-S7(cy))
+S7(c;)-exp [(yo +p)(t—T)]} /2w (15)

for t=T and for all i=1,2,...,n. As is illustrated in the lower half of fig. 3,
the frequency of the firms employing the best practice method F,(c,), its
lowest layer, grows slowly at first, accelerates its speed as the corresponding
capacity increases its share, but after the corresponding capacity share
reaches its midpoint, loses its growth momentum, yet approaching unity
asymptotically. [That is, F,(c,)—1, as t—00.] In the long run, therefore, all
the firms in the industry will come to adopt the best practice method with
unit cost c,. i

In the economy with no technological imitation (nor innovation), the firms
which are lucky enough to possess the least cost production method and
hence able to afford the highest growth rate will in the long run monopolize
the whole productive capacity of the industry. However, as soon as the
possibility of technological imitation by relatively high cost firms is taken
into account, this logic of economic selection loses much of its effectiveness.
True that the lowest cost firms will again monopolize the whole productive
capacity in the long run, but, as we have seen above, the force of
technological imitation will eventually allow all the existing firms to join the
rank of the lowest cost firms. In fact, it is precisely the very expansion of the
productive capacity of the lowest cost firms — their own success — which
necessarily invites the vigorous imitation activities of the less fortunate ones
and betrays.their own bids for the dominance of the whole industry. The
human force of imitation thus has the power to overcome the blind force of
economic selection. It is, in other words, the ‘Lamarckian’ mechanism, not the
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Darwinean, that assures the survival of the firms in this world of capa01ty
growth and technological imitation.

Still only the fittest survives in this world, and the industry’s long-run state
of technology is nothing but a neoclassical paradigm of perfect information.
The introduction of technical innovation, however, will destroy this last
vestige, as we shall see in the sections that follow.

6. Innovation and the state of technology in the long run

Finally, let us introduce the process of technological innovation into our
picture of the industry. To begin with, we follow the notation of the previous
paper and denote by T(c) the ‘innovation time’ of a unit cost c, i.e., the time
at which a production method of unit cost ¢ is for the first time put into
practice in the industry. Then, at each innovation time T(c), both the
cumulative capacity and the cumulative frequency of the unit cost ¢, S,(c)
and F,(c), emerge out of nothingness and start their long evolutionary
journey. Since the total number of firms in the industry is M, the initial firm-
frequency Fr(,(c) is equal to 1/M. On the other hand, the initial capacity
share Sp(,(c) is not necessarily equal to 1/M. It may be larger or smaller
than 1/M, depending upon whether the capacity size of the innovator is
above or below the industry average. The upper half of fig. 4 illustrates the
evolutionary pattern of the cumulative capacity share function and the lower
half the evolutionary pattern of the cumulative frequency function, both
under the joint pressure of differential capacity .growths, technological
imitation and innovation. They are drawn under the assumption that every
firm is able to innovate.

The state of technology is moved by the interplay of three kinds of
dynamic forces. In the first place, the force of economic selection works to
make the logistic growth of cumulative capacity shares, shown in the upper
half of fig. 4, speedier than the growth of cumulative frequencies, shown in
the lower half of fig. 4. This is the force which tends to amass the industry’s
productive capacity in the hands of the lower cost firms. Second, technolog-
ical imitation is the main motive force behind the logistic growth process of
cumulative frequencies. (Of course, it also contributes to the logistic growth
process of cumulative capacity shares.) This is the force which diffuses the
efficient technology throughout the industry. Finally, we have technological
innovation, whose function in the Schumpeterian world is to disrupt the
tendency of the industry to settle down to neoclassical equilibrium and to
force it to forever search for the higher and higher efficiency. Then, how will
these conflicting forces interact with each other and fashion the state of
technology in the long run?

In order to give an answer to this question, we need to restate the
hypotheses, posited in Part I, which pertain to the process of inventive
activities outside of the industry and the process of innovative activities
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Fig. 4. The evolution of the state of technology under the combined pressure of economic
selection, technological imitation and technological innovation.

within the industry. First, let C(t) represent the ‘potential unit cost’ at time ¢,
i.e., the unit cost of the best productive method technologically possible at
time t. Only the firm successful in an innovation at time ¢ can turn this
technological possibility into practical use. The potential unit cost is sup-
posed to be determined by the stock of scientific knowledge accumulated by
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basic research activities throughout the entire economy. Now, let T(c) denote
the inverse function of C(t), defined by T(C(f))=t. We know that, if there
occurs an innovation at time ¢, the unit cost of the innovator becomes equal
to the potential unit cost C(t). Hence, if a given production method with unit
cost ¢ is currently in use, it must have been introduced into the industry at
time T'(c). This, of course, conforms to the notation T(c) we have already
adopted to denote the innovation time of a unit cost c. As in Part I, we
assume

Hypothesis (PC). The potential unit cost is dechnmg at a constant
(positive) rate A over time; that is

C(t) =exp (— A1). (16)

Then, we can specify the innovation time as T(c)= —(1/4) Inc.'!

Next, we have to introduce a hypothesis characterizing the condition for a
firm to become an innovator. In Part I we considered two alternative
hypotheses pertaining to this — one supposing every firm is able to innovate,
the other assuming only the most efficient are capable of innovation.
However, once effects of capacity growth are taken account of, the analysis
of the long-run evolutionary pattern of the state of technology under the
second alternative becomes quite intractible, though perhaps not an absolute
impossibility.!> In the present paper at least, we therefore have to content
ourselves with the analysis of the long-run implications of the first alternative
only. We thus posit here

Hypothesis - (IN-a). Every firm has an equal and constant chance for
successful innovation at every point in time. Specifically, the probability that
a firm succeeds in carrying out an innovation during a small time interval At
is equal to

v- At, \ 17

where v>0 is a constant parameter summarizing the effectiveness of the
firm’s innovation activity.

This hypothesis is identical with the one we posited in section 5 of Part 1.
Within the context of the present paper which takes an explicit account of
the process of capacity growth, it can be interpreted as supposing implicitly
that the size per se does not provide the firm with any advantage in the
probability of its innovative success. At the same time, however, because of

t1We have set C(0)=1 for convenience.
121t is of course possible to examine this case by means of a computer simulation.
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the assumed disembodied nature of technological change, the fruit of a
successful innovation can be enjoyed by the firm in proportion to its existing
capacity size. All in all, a kind of constant returns to scale is implicitly
posited in respect to the firm’s innovation activity in the above hypothesis.
. Now, according to hypothesis (IN-a), the probability that one of M firms
in the industry suceeds in an innovation during a small time interval is equal
to (vAt) - M =(vM)- At. Hence, the occurrence of innovations in the industry
as a whole is subject to a Poisson process, which is sometimes called the law
of rare events. As time goes on, however, the industry undergoes many
innovations. And out of such repeated occurrence of rare events a certain
statistical regularity is expected to emerge. Indeed, not only the pattern of
innovations but also the whole evolutionary pattern of the state of tech-
nology is expected to exhibit a certain statistical regularity in the long run.

To see this, let Sf(c) and F(c) denote, respectively, the expected value of
the cumulative capacity share function and the expected value of the
cumulative frequency function at time t. For the purpose of describing the
long-run average pattern of the industry’s state of technology, we only have
to concern ourselves with the behavior of S(c) and F}(c).

Under hypotheses (G), (IM), (PC) and (IN-a), we are able to derive the
following pair of differential equations concerning S¥*(c) and F¥(c):

SH(e) =9+ WSH)(1—S,(e) +v(1—S¥(0)), (18)

F¥(c)=uSH)(1—FF () +W(1—F¥c) (19)

for t=T(c), with the initial condition S o= F T(C)(c) v. Eq. (18) was
deduced as follows. Let us ignore the forces of economic selection and
technological ‘imitation for the moment. Then, the value of S,(c) increases
whenever one of the firms with unit costs higher .than c succeeds in
innovation. Indeed, its value increases by the magnitude equal to the
innovator’s capacity share. [An innovation by a firm with unit cost ¢ or less
does not affect the value of S,(c).] Since the probability of a successful
innovation by one particular firm is v- 4t during a time interval A4t, and the
capacity shares of the firms with unit costs higher than ¢ add up to 1—S,(c),
the expected increase in the value of S,(c) can be computed as (v- At)-(1—S,(c))
during the same time interval, or v-(1—S,(c)) per unit of time. If we combine
this with the contributions from economic selection and technological imita-
tion, given in eq. (12), and rewrite it in.terms of the expected cumulative
capacity share function, we obtain eq. (18). Eq. (19), on the other hand, can
be deduced in a manner analogous to the one we employed in section .4 of
the preceding paper.
Eq. (18) turns out to be a logistic differential equation of S *(c)+v/(y5+,u)

which can be solved explicitly as
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1+v/(yo+p) v
PO+

SHO=— 5 (20

v

1+

exp [—(y0+u+v)(t—T(c)]

where we have employed the initial condition S’;(C)(c)=v, which is equivalent
to S¥(c)=0. Eq. (19), on the other hand, is not an independent equation of
its own. But, as is shown in appendix B, if we couple it with (20), we can still
solve it to obtain

F:*(c)=1-exp[—y ;fﬂ(t—T(c»]

X{ YO+ 1

—u/(y5+v)
0 t—T R
e sl LR LRI (c))J}

2D

where the initial condition F To(c)=v or equivalently F%,(c)=0 was
employed.

Eqgs. (20) and (21) still fall short of giving us the long-run average picture
of the industry’s state of technology. For we still have to take into account
the general tendency of unit costs to decline over time, which shifts to the
left both cumulative capacity share function and cumulative frequency
function. In order to neutralize this tendency, let us, as in Part I, measure the
proportional gap between the unit cost of a given production method and
the prevailing potential cost by a variable z,=Inc—InC(f) and call it the
‘cost gap’ of the production method in question. Then, in terms of this
relative measure of efficiency, we can rewrite eqgs. (20) and (21) as follows:

~ 14+v/(yo+ ) v :
SH(e)= = — , 22
(C) S(Z) 1+75+ﬂexp<-_'))5+ﬂ+vz> '))5+IJ ( )
v - A
~ 0
F¥(c)=F(z)=1—exp |: — 1—())3;——%;52] (23)

YO+ p v vHpo+p | |00t
X + exp z s
vHpo+pu v+yi+pu A

where by virtue of hypothesis (PC) we have noted the relation t— T(c)=
t+(1/A)Inc={—In[exp(—Af)] +Inc}/i=2z/A

Egs. (22) and (23) represent the ‘long-run average cumulative capacity
share function’ of cost gaps and the ‘long-run average cumulative frequency
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function’ of cost gafps, respectively. They are functions only of the cost gap z
and are totally independent of calendar time ¢! We can also calculate their
density forms, respectively, as follows:

(yo+pu+v)?
Ayd + )

N | v o+ u+v [y6+u yo+u+v \12
{y5+ueXp< 27 z>+ . exp< 2 z

(24)
_dF'(z)'__ vpd
T@==g, *eXp[ /?.(y5+,u)z]
y5+,u v V+V5+H —u/(vo+p) ‘
X[v+y5+,u+v+y5+ueXp< A >]
1+v/(yd+p) vpo
25
A Myd+p) < O+ u+v >+l(y5+u) 23)
—F+——exp| ———1—2
JZ wy A

The upper part of fig. 5 illustrates a typical shape of the long-run average
density of cost gaps in terms of capacity share and the lower part of fig. 5
illustrates a typical shape of the long-run average density of cost gaps in
terms of firm frequency. [To save the space, we have omitted the diagrams
illustrating their cumulative counterparts, S(z) and F(z).] The former is a
long-run statistical summary of the relative distribution of the industry’s total
productive capacity over a (shifting) spectrum of diverse production methods,
whereas the latter is a long-run statistical summary of the relative dispersion
of firms over a (shifting) spectrum of diverse production methods. Together,
they describe how the dynamic interactions among capacity growth, tech-
nological imitation and innovation will in the long run generate a statistical
regularity out of the seemingly irregular patterns of the evolution of the state
of technology. In fact, it is quite assuring that the shapes of these two
‘theoretical’ distributions are not unlike those of the ‘empirical’ distributions
presented in fig. 1.

As is seen from (24) and (25), the long-run average configuration of the
industry’s state of technology is determined by the basic parameter values of
y6, u v and A, each representing the force of economic selection, imitation,
innovation and invention, respectively. Indeed, it is not difficult to show that,
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Fig. 5. The long-run average pattern of the state of technology in an industry.

other things being equal, an increase in yd, u and v tends to concentrate the
dispersion of cost gaps, whereas an increase in A tends to widen it, both in
terms of the long-run average densities of capacity share and firm frequency.
What is of the primal importance is, however, not the specific results of
comparative statics concerning these long-run average capacity share and
frequency functions, but the general observation that a spectrum of produc-
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tion methods with diverse unit costs will forever coexist in the industry. Not
only the fittest but also the second, third, fourth, ..., indeed, the whole range
of the less fit will survive in the long run. The force of economic selection
working through the differential growth rates among firms with different unit
costs is constantly outwitted by the firms’ imitation activities and intermit-
tently disrupted by the firms’ innovation activities. Indeed, the processes of
growth, imitation and innovation will interact with each other and work only
to maintain the relative configuration of the industry’s state of technology in
a statistically balanced form in the long run. In fact, as was already
emphasized in Part I of this series of papers, it is this statistical ‘equilibrium’
of technological ‘disequilibria’ across firms, that characterizes the ‘long run’
of our Schumpeterian industry.

7. Empirical returns to scale

The relationship between the sizes of firms and their efficiency (or
profitability) has been one of the central issues in the traditional theory of
the firm and industrial organization. The question which is usually asked is:
‘what general effects will the sizes of firms ... have on the efficiency attained
in production and distribution? [Bain (1968, p. 165)]. Behind this question is
a static view that the size is an independent variable which functionally
explains the degree of efficiency the firm attains in the form of economies or
diseconomies of large-scale firms. Numerous empirical studies which try to
detect the existence of positive or negative correlations between size and

_efficiency on the basis of individual firm data have thus been conducted in
- the hope that these cross-sectional correlations would reveal the underlying
functional relationship between firm size and efficiency.

In the present paper, however, we have started from the premise that the
unit cost of production for each firm is constant (up to the position of
productivity capacity) at each point in time and hence that there exists no
systematic relationship between firm size and efficiency at the level of the
individual firm. The unit cost each firm has attained is the fruit of the firm’s
innovation and imitation activities in the past, whereas the capacity size of
the firm is the cumulative result of its past growth policies whose major
determinant is nothing but the profitability or the relative efficiency. Both
size and efficiency have as their common cause the firm’s pursuit for
technological superiority in the form of innovation and/or imitation — the
former as its long-run effect and the latter as its more immediate effect.

It is thus expected that this dynamic causal relation in the long run gives
rise to a certain statistical relationship between capacity size and unit cost in
our Schumpeterian model, even though any static relationship is by assump-
tion precluded between them. This is indeed the case, and in fig. 6 we
illustrate numerically a typical shape of the ratio between the long-run

JEB.O—D
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Fig. 6. The long-run average relation between efficiency and firm size.

average density of capacity share and of firm frequency, §(z)/f(z). This ratio
represents (approximately) the average capacity size of firms (measured in
terms of the average firm size of the industry as a whole) at each value of
cost gap z. It normally has a truncated bell-shape, so that there is in the long
run a negative correlation between capacity size and cost gap for relatively
efficient firms (ie., for firms with relatively low values of cost gap) and a
positive correlation for relatively inefficient firms. Reason for such non-
monotonic correlation is not hard to come by. The firm size is nothing but
the legacy of the capacity growth in the past, which was in turn governed by
the relative performance of its cost conditions in the past. The most efficient
firms at present are those who have recently succeeded in innovation or
those which have recently succeeded in imitating the innovator. Since they are
yet to exploit their good luck by rapidly expanding their capacity,
the most efficient firms are unlikely to be the ones with the large capacity
size. The large size firms are, on the other hand, probably those which have
already passed their prime times and are currently enjoying their past success
in innovation or imitation. They therefore tend to dominate in size the class
of firms with modest efficiency. Finally, the firms with currently poor
efficiency are likely to be small because of their relatively lower growth rates
in the past.

The above explanation of the spurious relationship between size and
efficiency has nothing to do with the conventional explanation based upon
the static notion of economies or diseconomies of large-scale firms. If,
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however, empirical researchers run cross-sectional regressions of unit cost on
capacity size or vice versa, they are likely to ‘discover’ diseconomies of scale
if they restrict their data to firms which earn at least some minimum rate of
profit and economies of scale if they discard high profit firms as abnormal. If
they do not restrict their data set, they are then unlikely to detect any econo-
mies or diseconomies, although they are likely to ‘discover’ in this case that
within-the-class-dispersion of unit costs increases as capacity size decreases.
Needless to say, these purely theoretical predictions are very much in
conformity with the results of the past empirical analyses of the relationship
between size and efficiency or profitability.

Flg. 7 illustrates how this empirical relationship between efficiency and size
varies as each of the basic parameters changes its value. It shows that an
increase in the declining rate of potential unit cost, 4, tends to widen the
range of empirical scale diseconomies and moderate the extent of both
empirical diseconomies and economies of scale; that an increase in the
probability of innovation, v, tends to narrow the range of empirical scale
diseconomies but at the same time slightly moderate the extent of scale
economies and diseconomies; that an increase in the likelihood of imitation,
‘u, tends to narrow the range of empirical scale diseconomies but moderate
the extent of both scale economies and diseconomies; and finally that an
increase in the force of economic selection, represented by yd, tends to
narrow the range of empirical scale diseconomies and accentuate the extent
of both scale economies and diseconomies (in fact, when yé =0, that is, when

z

(o]

Fig. 7. Comparative statics concerning the long-run average relation between efficiency and firm
size. (The base values of the parameters are 1=0.05,v=0.01, u=0.50,y6=0.50.)
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the force of economic. selection is completely absent, no statistical relation
should be detectable between efficiency and size across firms).

Before leaving the present section, it should be emphasized that we are not
insisting on the unimportance of technological economies or diseconomies of
scale. There is no doubt that they are often quite important in determining
the structure of industry. All we would like to point out is the obvious
possibility that, in parallel to the ‘static’ conditions, the industry’s state of
technology is also subject to the ‘dynamic’ forces of technological innovation,
imitation and economic selection, whose effects may be strong enough to
overwhelm the constraints imposed by the former. There is always a danger
that mere consequences of these dynamic forces are mistaken for the
existence of the static technological effects.!?

8. Concluding remarks

The doctrine of economic selection insists, by means of the analogy to the
biological theory of natural selection, that only the most efficient firms will
survive the long-run competitive struggle for limited resources for capacity
growth. It is this doctrine which has served the ultimate foundation of the
orthodox belief in the ‘rationality’ of individual economic agents and the
‘efficiency’ of the market system as a whole, but which has seldom been
formalized rigorously within the context of economic processes in which self-
seeking firms, not biological species or genes, compete with each other for
their survival and growth.

In the present paper, we have developed a simple dynamic model of
industrial structure in which firms grow or contract (relative to others) in
accordance with the success or failure of their innovative and/or imitative
activities and the evolution of the state of technology of the industry as a
whole is governed by the complex interplay of growth, innovation and
imitation of these firms. The force’ of the logic of economic selection has
then been tested within this explicitly evolutionary model of economic
process.

In the first place, we have found the paradigm of the economic selection
doctrine in an artificially constructed economy in which no possibility of
technological innovation or imitation is allowed to the firms. In this special
environment it is not difficult to see that a firm or a group of firms which is

13The argument given in this section is close in spirit to that of Demsetz (1973). Mancke
(1974) also developed a similar argument in the more formal manner by appealing to Gibrat-like
stochastic processes. Since he did not incorporate the possibility of technological imitation nor
the serial correlation of growth rates due to a successful innovation, he could only deduce a
short- or medium-run positive correlation between firm profit rates and capacity sizes. His result
has thus become open to criticisms by Caves et al. (1977) and Scherer (1979). Our result, on the
other hand, indicates the existence of the more complex relationship between profitability and
size both in the short and long run.
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lucky enough to start with the most efficient production method will
outgrow all the other firms and eventually dominate the whole productive
capacity of the industry. Only the fittest will survive the competition and the
industry will in the long run find itself in a static-equilibrium of perfect
technological knowledge. Once, however, the possibility of technological
imitation is brought into our model, the force of the logic of economic
selection loses much of its forcefulness. It is true that even in this case only
the most efficient firms will survive in the long run, and the industry will
eventually settle down to a static equilibrium with perfect technological
knowledge. But such long-run state is brought about, not by the success of
the most efficient firms in their striving for the higher growth rate, but by the
success of the less efficient firms in their efforts to imitate the most efficient
ones. The blind force of economic selection is thus outwitted by the human
force of imitation process. Finally, when firms are allowed to innovate in
their production methods, the selective force of market competition is no
longer capable of weeding out the less fit even in the long run. Not only the
most efficient but also the whole spectrum of firms with diverse efficiencies
will survive forever. Indeed, it has been shown that the dynamic interplay of
the processes of growth, imitation and innovation will keep the industry’s
state of technology from settling down to the static equilibrium and repro-
duce in the long run a relative dispersion of efficiencies across firms in a
statistically balanced form. The doctrine of economic selection itself has thus
failed the ‘test of survival’.

Appendix A

The purpose of this appendix is to suggest that the formal structure of our
Schumpeterian dynamics developed in the main text is capable of dealing
with a wide variety of industry structures. In particular, we consider here the
case of a monopolistically competitive industry which consists of many firms
competing with each other by producing differentiated products. Unlike the
case of homogeneous product industry studied in the main text, the two
causal mechanisms from successful innovation or imitation to firm growth,
explained at the outset of section 2, are now both at work. Let us examine
them separately.

In order to formalize the first mechanism, suppose that each firm adopts a
mark-up pricing rule and sets the price of its own product p as a constant
mark-up on the unit cost c; that is

p=(1+m)-c, (A.1)

where m>0 is a constant mark-up rate, which is assumed to be uniform
across firms. Here, we do not analyze how this constant mark-up rate, which
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is sometimes called (rather tautologically) the degree of monopoly, is
determined by the structure of industry. Let ¢(t) be the industry-wide average
unit cost and p(t) the industry-wide average price, at time ¢. Then, in view of
the mark-up relation (A.1), we have the relation between them,

70 = (1+m)e(0). R (A2

Our main hypothesis in this case is that the firm’s accumulated stock of
‘good-will’ of customers and hence its sales volume grow at a rate which is
correlated with how low its own price p deviates from the industry-wide
average p(1). [See, for example, Phelps and Winter (1970) for a model of the
dynamics of good-will.] Since the firm expands (or contracts) its productive
capacity in accordance with the expansion of its sales volume, we can in fact
suppose, as a crude first-order approximation, that the capacity growth
policy of the firm with unit cost ¢ is given by the following formula:

Yo—V (Inp—Inp(®) =y, —7 - (Inc—In (1)), (A3)

by (A.1) and (A.2), where )’ is a positive constant representing the responsive-
ness of the growth rate of sales volume to the relative cheapness of the firm’s
product and y, is a constant trend growth rate of sales volume. Eq.
(A.3) thus says that the growth rate of the firm is governed by the degree of
its relative cost advantage, —(In c—In ¢(z)).

The second causal chain from technological change to growth in thls
monopolistically competitive case is easier to formulate if the innovation is
not the process innovation but the product innovation. Accordingly, let us
here re-interpret the reciprocal of c, ie., 1/c, as the index of the ‘quality’ of
the product in question. A product innovation or imitation thus amounts to
an event which raises the value of this quality index 1/c. Our hypothesis here
is that the profit margin a firm can enjoy at a given point in time is
determined by the relative quality of its product, which may be represented
as In(1/c)—In(1/c(t)). If, furthermore, we suppose that the firm’s rate of
capital growth is positively correlated with its current profit margin (either
by its effect on the expected profitability or as the source of the internal fund
for investment), we can suppose, as a very crude first-order approximation,
that the capacity growth rate of the firm with the quality index 1/c is
determined by the following formula:

vo+y" {In(1/c)—In(1/2())}, (A4)
where y”(>0) and yg are given constants. This equation says that in this
model of product innovation the higher the index of.the product quality 1/c
in relation to its industry-wide average 1/¢(t), the higher the rate of capacity
growth of the firm in question.
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Next, we would like to show that the two models of the firm growth given
above both lead to eq. (3) for the rate of change in capacity share we
deducted in section 3. This is easy to do, for a 81mple substitution of (A.3)
into eq. (2) of the main text yields

L=t e~} — . o=y~ (n,—nco)lsc)

=—y-(In¢; —In &), (A.5)

and of (A.4) into (2) yields

S,(ci)

NN ={yg+v" (n(1/c;)—In(1/c(t))}

~ % 5" (n(tiey) - In 10} sc5)

= —y"-(Inc; —In¢c(z)). | (A.6)

Both equations are formally identical with eq. (3) of the main text. Therefore,
whether the industry in question produces a homogeneous product or not,
and whether, in the case of a differentiated product industry, innovation is of
the process type or of the product type, the growth rate of the capacity share
of a unit cost is shown to be proportional to the extent of its relative
advantage over the industry average unit cost. Hence, all the results in the .
present paper are directly applicable to the two alternative models discussed
in this appendix.

Appendix B

The purpose of this appendix is to obtain an -explicit solution to the
following form of differential equation:

% =ay,(1—x,)+ (1 —x,), ' (B.1)
where

Y

1+5exp[—a(t—T)]_n’ (=T (B2)

Ve =

Rewrite (B.1) as

X, _ oy i
1-x, 1+dexp[—&(t—T)] (B =om),
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and integrate with respect to t, we get

—(ory) dt
rl+dexp[—e(t—T)]

In(l—x)=| (B—an)(t—T)+In(l—x,). (B.3)

Let Z(t) represent 1+dexp [ —&(t— T)]. Then the integrand in the right-hand
side of the above equation can be rewritten as

zo | 1 oy 0 1
—oy liaz ez D dzZ= - 1n{——1+5+,1+5 exp[a(t—T)]}.

Substituting this back into (B.3), we finally obtain

X =1—(1—=xg)exp[—(B—an)(t—T)]

0 ! o B4
X{l—-l-é 1+5exp[z—:(t T)]} . (B4)
If we identify x, with F,(c) and set «, f, y, 8, ¢ and 4 equal to p, 0, 1, 1/S(c)
—1, y6+u and O, respectively, we obtain (15) of the main text. If, on the
other hand, we identify x, with F}*(c) and set «, 8,7,5,¢ and n equal to u, v,

L+v/(y6+p), (p6+ p)/v, o+ p+v and v/(yd + p), respectively, we obtain (21) of
the main text.
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